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de Colombia in Bogotá, for his knowledge and generosity. I am extremely grateful to my parents

and sister for their continuos support and love. I am very grateful to my friends Leidy Leal, Wilmer

Leal, Roberto Leal, Juan Sebastián Portilla, Julián Cárdenas, Nicolás Ramı́rez, Walter Páez, Este-
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Abstract

We study the logic of sheaves of structures over topological spaces developed by Caicedo from

the point of view of pointless topology showing that Caicedo’s results, in particular the Generic

Model Theorem, still hold for sheaves of structures on a locale. We describe, using Fourman

and Scott’s techniques, the sheafification functor from the category of presheaves to the category

of sheaves of structures on a locale, obtaining an isomorphism between the category of complete

Ω-structures and the category of sheaves of structures on Ω. In this context, we present some con-

nections between logic and geometry.

Keywords: logic, sheaves, topology without points, locale theory.
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Chapter 1

Introduction

From 1907 on dutch mathematician L.E.J. Brouwer made a strong effort in order to create an al-

ternative to classic mathematics known as intuitionistic mathematics. From an intuitionistic point

of view mathematics are mental constructions, in particular, a statement is valid only when it has

been given a proof of it. Logic laws such as the excluded middle (A ∨ ¬A), or the equivalence

between an statement and its double negation (A ≡ ¬¬A) are no longer true in general under this

interpretation, their truthfulness or falsehood depending on the statement A.

Differences between classic and intuitionistic mathematics go beyond logic, in fact Brouwer

himself never dealt with logical issues. It was Arend Heyting, his best student, who proposed both

propositional and first order calculi for intuitionistic logic in 1930. The first models of this propo-

sitional calculus where of the same nature as the Boolean Algebras, that is to say an algebraic copy

of the calculus axioms, they are called Heyting Algebras . Topological spaces are more interesting

models of this calculus, their lattices of open sets being Heyting Algbras. Locales are complete

Heyting algebras, these algebras are designed to resemble the lattice of open sets of a topological

space. What makes this approach particular is that its basic concept is not points, but rather neigh-

borhoods of points.

There have been several proposals of first order semantics for the intuitionistic calculus, each

of which satisfies a completeness theorem. Among the most interesting we find Kripke models,

topoi (Kripke-Joyal semantics) and sheaves of structures on topological spaces as studied by Xavier

Caicedo [Ca95]. All of these objects can be seen as variable structures.

Topological sheaves of structures occupy a flexible place in between Kripke models and seman-

tics of topoi. The epistemic principle that prompts Caicedo’s work is continuity of truth, i.e, that



every statement satisfied in a point of a space should be satisfied in a neighborhood of the point.

This postulate finds a deep basis in the fact that every observable phenomenon occurs extended in

time and space, hence punctual properties are no more than ideal limits of observable properties.

This principle holds in the logic of topological sheaves studied by Caicedo.

All points are no more than ideal limits of its surroundings, hence it is worth to ask what does it

happen with the logic of sheaves of structures if we exchange the underlying topological space for a

locale, that is to say, if we forget points and focus on neighborhoods. A category similar to the one

of sheaves of structures on a locale have been studied by Fourman and Scott [FS79], in their work

they develop adequate techniques in order to describe the sheafification functor for presheaves of

sets on a locale.

The main objective of this work is to generalize Caicedo’s results [Ca95] to the scope of sheaves

of structures on a locale. In order to attain this in the first chapter we establish preliminary results

about intuicionistic logic and locale theory. In the first section of the second chapter we describe

the sheafification functor for preshaves of structures on a locale using the tools developed by Four-

man and Scott [FS79], in particular the category of complete Ω-structures which is proved to be

isomorphic to the category of sheaves of structures on a locale. In the second section of the sec-

ond chapter we define semantics for sheaves of structures on a locale. In this context we present

natural generalizations of the theorems in [Ca95], including the Generic Model Theorem. The last

result is described by Caicedo as the Fundamental Theorem of Model Theory, because it has as

consequences Łoś ultraproducts theorem and the completeness theorem for first order logic among

others. We present a characterization of connected locales in terms of the semantics defined and we

sketch a characterization of compact locales using Fourman and Scott’s semantics, both valid for

the topological case.
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Chapter 2

Preliminaries

2.1 Intuitionistic Logic

Intuitionistic logic arises from the logical study of a good portion of the work of dutch mathemati-

cian and philosopher L.E.J. Brouwer. For Brouwer, mathematics are mental constructions in which

the language emerge at first as accessory and it is just necessary in order to achieve practical pur-

poses such as memorization and communication. Logic depends then on mathematics, because it

studies the regularities in mathematical language, but mathematics is independent from logic. No

wonder why Brouwer never took care of the logical aspects of his work[vD13, p. 96].

For Brouwer, mathematical objects are mental constructions, so from the fact that it is contra-

dictory that a property holds for all objects in a certain class does not follow that there is one object

in the class for which the property does not hold. This last object should be given by a construction.

Brouwer was opposed to Hilbert for whom the existence of a mathematical object meant merely

that this existence was non-contradictory, for the dutch mathematician existence meant existence

in certain conditions. Following this train of thought, since mathematical truths are also mental

constructions (proofs), it is not certain that the excluded middle holds for a statement A, that the

assertion A∨¬A holds would mean that we have a proof of A or a proof of ¬A. This is shown with

great clarity in the Brouwerian counter examples to the excluded middle. For n ∈ N, let R(n) be

the assertion: the digits of the decimal expansion of π are all 9 in between the positions n − 9 and

n. Consider the sequence

an =

{
2−n, if for all k ≤ n, ¬R(k).

(−2)−k, if R(k), k ≤ n and for all p < k, ¬R(p).

This sequence converges to a real a, designated by Brouwer as pendular number. But we have no

evidence which proves that there is an n which satisfies R(n), nor, in case of its existence, do we



have a clue about its being even or odd, then this a does not satisfy a = 0 ∨ a 6= 0, even the tri-

chotomy principle fails to hold for this a [vD13, p. 284].

Although the concept of existence in Brouwer has aspects in common with the one of Poincar,

Borel, Baire and Hadamard, the so called semi-intuitionistics, Brower’s rejection of the excluded

middle makes a big difference. Another important issue that comes between Brouwer and his pre-

decessors is the acceptance of the existence of sequences of objects that are not governed by a law

or a finite definition. This is a key point for the development of his intuitionistic mathematics whose

publication started in 1918 with the article: Founding Mathematics independently of the logical the-

orem of the excluded middle, a confusing name if we consider that in all the series of articles the

logical principle is not even mentioned, except for the title. Brouwer’s alternative mathematics is

not just a logical restriction of classical mathematics but a whole another mathematical universe in

which all real functions are continuous and the continuum (real line) is not only connected but it

can not be decomposed in any two disjoint sets. In particular one has ¬∀x(x ∈ Q ∨ x /∈ Q), so

that the excluded middle is not only not always true but even contradictory. Brower’s most famous

theorem, the fixed point theorem, needs to be reformulated as it turns out to be false in his original

version. For a more detailed account of Brouwer’s intuitionistic mathematics we refer the reader to

[vD13] sections 8.6 and 10.2-10.4.

As we have said, Brouwer never took care of the logical aspects of his work, it was one of

his closest friends, Gerrit Mannoury, who proposed in 1927 the problem of formalizing the logical

principles used in intuitionistic mathematics, in the same fashion it had been done with the classical

principles thanks to the effort of Frege, Russel, Whitehead, Peano, Hilbert et al. [vD13, p. 500].

The problem, proposed for the Dutch Mathematical Society’s annual contest, was solved by Arend

Heyting, who will publish his solution in 1930. In this article propositional and first order logic as

well as arithmetic and set theory are formalized in an intuitionistic form. It is worth mentioning

that years before Glivenko and Kolmogorov had formalized fragments of the propositional and first

order intuitionistic calculus. From 1931 on Heyting presented an epistemic interpretation of the

logical connectives known as proof interpretation: it is argued that the validity of any assertion in

mathematical language depends upon a construction or proof, in this way ∃xφ(x) is true when there

is a construction of an object d, such that φ(d). The implication φ → ψ is true when there is a

construction that transforms any proof of φ in a proof of ψ, the negation ¬φ is interpreted as φ→ ⊥
where ⊥ is contradiction, that has no proof [vD02, p. 6]. A germ of this interpretation was present
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in Brouwer’s doctoral dissertation [vD13, p. 96].

Heyting algebras are algebraic copies of the axioms of intuitionistic propositional calculus, as

proposed by Heyting, in the same way Boolean algebras arise from classical logic. Classical logic

is obtained from intuitionistic logic by adding the excluded middle or any other equivalent principle

as an axiom. We define the intuitionistic propositional calculus, here we use the logical connectives

¬,→,∨ y ∧ which are non interdefinable in this setting[Bo94, p. 2].

1.1 Definition. The intuitionistic propositional calculus H has axioms [vD02, p. 9]:

H1 φ→ (ψ → φ),

H2 (φ→ (ψ → ϕ))→ ((φ→ ψ)→ (φ→ ϕ)),

H3 φ→ (ψ → (φ ∧ ψ)),

H4 (φ ∧ ψ)→ φ,

H5 (φ ∧ ψ)→ ψ,

H6 φ→ (φ ∨ ψ),

H7 ψ → (φ ∨ ψ),

H8 (φ→ ϕ)→ ((ψ → ϕ)→ ((φ ∨ ψ)→ ϕ)),

H9 (φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ),

H10 ¬φ→ (φ→ ψ).

where φ, ψ and ϕ are formulas of the intuitionistic calculus. The only law of deduction is Modus

Ponens, we infer `H ψ from `H φ and `H φ→ ψ.

We also define the first order intuitionistic calculus.

1.2 Definition. The first order intuitionistic calculusH∗, arises from the intuitionistic propositional

calculus H by adding the following axioms where φ y ψ are first order formulas:

• ∀xφ(x)→ φ(t),

• φ(t)→ ∃xφ(x),
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where t is a free term for x in φ, besides we add the following rules of deduction:

• If `H∗ φ→ ψ(x), and x does not occur free in φ, then `H∗ φ→ ∀xψ(x).

• If `H∗ φ(x)→ ψ, and x does not occur free in ψ, then `H∗ ∃xφ(x)→ ψ.

The difference between classical and intuitionistic calculus occurs in the propositional level.

The deduction theorem turns out to be important since it allows us to characterize the relation

between the connectives ∧ and→ . In what follows we use the fact that a preorder can be seen as a

category.

1.3 Lemma. [Bo94, p. 5] If we order propositional statements by making φ ≤ ψ iff `H φ → ψ,

the functor φ ∧ − defined by ϕ 7→ φ ∧ ϕ, admits the functor φ → − as a right adjoint. Thus we

have a Galois connection, this means that for all propositional statements φ, ψ and ϕ, φ ∧ ψ ≤ ϕ

iff φ ≤ ψ → ϕ.

The last result allows us to give a simple definition of a semantics for intuitionistic propositional

calculus through Heyting algebras.

1.4 Definition. [Bo94, p. 5] A Heyting algebraH is a lattice, with different top and bottom, in wich

for all b ∈ H the functor:

− ∧ b : H → H, a 7→ a ∧ b,

has a right adjoint, denoted by

b⇒ − : H → H, a 7→ b⇒ a.

We use 0 and 1 to denote the bottom and the top element respectively. We use ¬a to denote a⇒ 0.

It is known that for preorders, the adjunctions are Galois connections, in this way the satisfaction

of the Galois connection

a ∧ b ≤ c iff a ≤ b⇒ c

for a, b, c in the latticeH is equivalent to the adjunction.

Heyting algebras turn out to be a natural semantics for intuitionistic propositional calculus. As

an example, for H1, if a, b ∈ H, then a ⇒ (b ⇒ a) = 1. Relations that equal 1 in all Heyting

algebras are exactly the deducible from H . The following properties of Heyting algebras will be

used often, so we list them next.
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1.5 Proposition. [Bo94, p. 5-8] Let H be a Heyting algebra, where a, b y c are elements of H, the

following hold:

• b⇒ c =
∨
{a : a ∧ b ≤ c} = max{a : a ∧ b ≤ c}.

• ¬b =
∨
{a : a ∧ b = 0} = max{a : a ∧ b = 0}.

• ¬(a ∨ b) = ¬a ∧ ¬b

• a ∧ ¬a = 0

• a ≤ b iff a⇒ b = 1.

• a ≤ ¬¬a.

• If a ≤ b, then ¬b ≤ ¬a.

• ¬0 = 1, ¬1 = 0.

• ¬a = ¬¬¬a.

2.2 Locales

The history of intuitionistic logic interweaves at this point with the history of topology without

points. The idea behind locales (complete Heyting algebras) is to study topological spaces by

studying his lattice of open sets. Although from the definition of topological space by Hausdorff

it was evident that points played a secondary role and what was really important to understand the

space structure was the behavior of the surroundings of each point and not of all subsets in which

the point is included, moving from the study of topology to the study of the underlying lattices

of opens needed the development of lattice theory and the important impulse of Marshall Stone’s

work. He proved that the dual category of Boolean algebras is isomorphic to the category of Haus-

dorff, compact, totally disconnected topological spaces. The last result suggested that the lattice of

a topological space contained more information than was expected, and this motivated the work of

mathematicians like Nbeling, Mc Kinsey and Tarski who from different perspectives tried to under-

stand topology without points. Still, it was Isbell, the first to introduce the term locale, who showed

that the study of the category of locales could be of great use in finding that products, subspaces

and dense spaces behave differently in this case. It was found that this approach enables to give

constructive proofs of theorems that in the classic case of topological space require strongly non in-

tuitionistic principles (axiom of choice) as in the case of Tychonoff’s theorem. For more details on
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the history of the development of this branch of topology we refer the reader to [Jo01, p. 835]. Next

we define locales, the only example for the moment being the lattice of open sets of a topological

space.

2.1 Definition. [Bo94, p. 14] A locale L is a complete lattice in which the following distributive

law holds for elements of L :

a ∧
(∨
i∈I

bi
)

=
∨
i∈I

(a ∧ bi).

2.2 Proposition. [Bo94, p. 14] A lattice L is a locale iff it is a complete Heyting algebra.

Proof. If L is a locale and a ∈ L, the functor a ∧ − preserves arbitrary colimits (suprema), since

L is a small category, a ∧ − has a right adjoint by the adjoint functor theorem. If L is a complete

Heyting algebra, the existence of a right adjoint for a∧− implies that it preserves arbitrary colimits

(suprema).

If a and b are elements of a locale L, its product is just a ∧ b. Since a ∧ − has a right adjoint,

each locale is a cartesian closed category with exponentiation given by ba = a⇒ b.

2.3 Example. Let (X, T ) be a topological space, T is a locale for the partial order given by inclu-

sion. IfU is an open set,¬U is the interior ofX\U and ¬¬U is the interior of the closure ofU. In the

locale of open sets of R we can see some counterexamples to classical logic principles. For example

if U = (−∞, 0) and V = (0,+∞) we see that U ∨¬U = U ∨ V 6= R, ¬¬(U ∨ V ) = R 6= U ∨ V.

The study of lattices of topological spaces admits another justification. In [Ca95], Caicedo ar-

gues that observable phenomena are presented extended in time and space, or at least in space.

Points, just as punctual statements, are ideal limits of space and observable phenomena. Caicedo

makes use of the following example (which was studied one hundred years before by American

philosopher Charles S. Peirce [Pe, P. 367]): suppose there is a white sheet with a black region,

about the points in the boundary between the two regions it can’t be said that they are black nor

white, that would mean that the color black or white would happen to be extended in a surrounding

of the boundary point, which is impossible. Hence it seems that excluded middle fails to hold in

boundary points. The color is just observable in surroundings of the point, not in the point itself

which constitutes an idealization of space.

From this perspective it is justified continuity of truth, the logic principle which asserts that

all logical statements satisfied in a point should be satisfied in a neighborhood of the point, just

14



as Serre proposed in the middle fifties [FAC,GAGA], in the intersection between algebraic and

analytic geometry. The logic of sheaves of structures developed in [Ca95] satisfies this principle.

This paradigm justifies the study of topological spaces not through his points, idealizations used in

the classical study of topology, but through their lattices of open sets which represent the relations

between surroundings of points. This brings us back to intuitionistic ideas because the individu-

alization of each of the points of the continuum is a classical operation that finds no analog in the

intuitionistic framework of Brouwer. In this mathematics there are individual points given by a

construction, bot these barely form a set of measure zero, the rest of the points (random points not

given by a construction) are the ones that give linear continuum its true structure. We continue with

the definition of the basic concepts of locale theory that will be needed later on. L,M y Ω will

denote locales.

2.4 Definition. [Bo94, p. 16] A morphism of locales f : L → M consists in a pair of morphisms

f∗ :M→ L, f∗ : L →M such that:

• f∗ is left adjoint to f∗,

• f∗ preserves finite infima.

2.5 Lemma. [Bo94, p. 17] There exists a bijection between morphisms of locales f : L →M and

maps f∗ :M→ L which satisfy:

• f∗(∨i∈Iai) = ∨i∈If∗(ai),

• f∗(a ∧ b) = f∗(a) ∧ f∗(b)

• f∗(1) = 1 for an index set I and a, b, ai ∈M. In this bijection, each f∗ gives rise in a unique

way to its right adjoint f∗.

2.6 Example.

Every continuous function between topological spacesf : (X, T ) → (Y,Y) induces a morphism

of locales f : T → M with f∗ = f−1, because f−1 maps open sets in open sets and preserves

arbitrary unions and finite intersections.

We can define the category of locales Loc whose objects are locales and whose morphisms are

morphisms of locales. If we define composition by making (f ◦ g)∗ equal to g∗ ◦ f∗ associativity

and existence of identities are satisfied.
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2.7 Lemma. [Bo94, p. 15] Let a be an element of L, then

↑ a := {b ∈ L | a ≤ b}, ↓ a := {b ∈ L | b ≤ a}

are both locales with the induced partial order.

2.8 Example. • Let a be an element of L. The functor i∗ : L →↓ a defined for b ∈ L such that

i∗(b) = a ∧ b defines a morphism of locales, his right adjoint being i∗ defined for c ≤ a by

i∗(c) = a ⇒ c. Since i∗ is surjective, i is a monomorphism of locales and it is the inclusion

of ↓ a into L. In the case where L is the lattice of open sets of a topological space and a ∈ L,
↓ a turns out to be the lattice of open sets of the space a with the subspace topology.

• The functor j∗ : L →↑ a defined for b ∈ L by j∗(b) = b ∨ a induces a morphism of locales

since it preserves arbitrary suprema, finite infima and maxima. Its right adjoint is j∗ defined

for any c ≥ a, by j∗(c) = c. Again, since j∗ is surjective, the induced morphism j is a

monomorphism and it is the inclusion of ↑ a in L. In the case where L is the lattice of open

sets of a topological space and a ∈ L, the locale ↑ a coincides with the local of open sets of

the complement of a with the subspace topology [Bo94, p. 16].

We can then define open and closed sublocales.

2.9 Definition. [Bo94, p. 18]

• An open sublocale of L is a monomorphism of locales f : M → L isomorphic to the

monomorphism i :↓ a→ L, for some a ∈ L.

• A closed sublocale of L is a monomorphism of locales f : M → L isomorphic to the

monomorphism i :↑ a→ L for some a ∈ L.

In order to the define the concept of dense sublocale we will need to consider more subobjects

than just the open and closed ones. These subjobjects (which turn out to be regular) are associated

with certain morphism that we define next.

2.10 Definition. A nucleus on a locale L is a functor j : L → L which satisfies the following

conditions:

(N1) a ≤ j(a),

(N2) jj(a) ≤ j(a),
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(N3) j(a ∧ b) = j(a) ∧ j(b);

for a, b ∈ L. Given a nucleus j, we define

Lj = {a ∈ L | a = j(a)}.

Lj turns out to be a locale with the inherited order where infima coincide with infima in L and in

order to obtain the supremum of a family we apply j to the supremum of the family in L [Bo94, p.

29].

A useful characterization of nuclei is the following.

2.11 Lemma. [JoII, p. 481] A mapping j : L → L is a nucleus iff the following relation is satisfied

by any a, b ∈ L,
(a⇒ j(b)) = (j(a)⇒ j(b)).

The three conditions in the definition of nucleus are equivalent to ask that j is a monad [Bo95,

p. 189] induced by a morphism of locales, that is to say, by its pair of adjoint functors [Bo94, p.

29]. This can be used to show that each nucleus j induces a morphism of locales Lj → L in which

j : L → Lj is the left adjoint and the identity (a 7→ a) the right adjoint. From the reflexivity ofLj in

L we can derive the locale structure of Lj mentioned in the definition. Since the mapping (a 7→ a)

is injective we have that the induced morphism is a monomorphism and so Lj is a subobject of L.
The following proposition tells us a bit more about subobjects induced via nuclei.

2.12 Proposition. [Bo94, p. 31] Let f : M → L be a morphism of locales. The following

conditions are equivalent:

• f is a regular monomorphism of locales (the equalizer of a pair of morphisms);

• f∗ is injective;

• f∗ is surjective;

• f∗ ◦ f∗ = 1M;

• f is isomorphic to the morphism Lj → L induced by the nucleus j = f∗ ◦ f∗ in L.

As a corolary of the above we have epi-regular mono factorizations in the category of locales.

2.13 Corollary. [Bo94, p. 32] Every morphism of locales factors uniquely as an epimorphism

followed by a regular monomorphism.
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2.14 Example. • Let a ∈ L, and i :↓ a→ L. i is a regular monmorphism since i∗ is surjective.

The corresponding nucleus, as defined in the above example is ja : L → L such that for

b ∈ L, ja(b) = a ⇒ (b ∧ a) = a ⇒ b. Where the last equality holds by the laws of

intuitionistic logic.

• Let a ∈ L, the closed sublocale i :↑ a→ L is also a regular monomorphism, the correspond-

ing nucleus is ja : L → L such that for b ∈ L, ja(b) = a ∨ b.

• Double negation allows us to define a nucleus ¬¬ : L → L such that for a ∈ L, ¬¬(a) =

¬¬a. The satisfaction of (N1) to (N3) is a follows if we use the intuitionistic calculus. Besides

L¬¬ = {¬a | a ∈ L}.

2.15 Theorem. [Bo94, p. 33] The nuclei on a locale, preordered with the pointwise order constitute

a locale. The dual of the locale of nuclei is the poset of regular subobjects of the locale L with the

inclusion preorder.

Proof. We already have a bijection between regular subobjects and nuclei. The pointwise preorder

for nuclei j and k is defined as follows:

j ≤ k iff for all a ∈ L, j(a) ≤ k(a),

j ≤ k is equivalent to Lk ⊆ Lj as sets, and this is equivalent to Lk ⊆ Lj as subobjects.

If (ji)i∈I , is a family of nuclei and a ∈ L,(∧
i∈I

ji

)
(a) =

∧
i∈I

ji(a).

The locale of nuclei has the identity as its bottom, which corresponds to the maximum regular

sublocale L, and as its top j : L → L such that a ∈ L, j(a) = 1 which corresponds to the

trivial sublocale {1}. In the locale of nuclei suprema are hard to define, but those are equivalent

to arbitrary intersections of families of regular subojects of the locale. If we consider a family

of regular subobjects as given by their sets of fixed points (Lj)j∈I , it is possible to show that the

intersection set of the family is again a regular sublocale. This can be done using the following

characterization of Lj . We will need the concept of exponential ideal.

2.16 Definition. [JoI, p. 62] A subset S of a locale L is an exponential ideal iff for all b ∈ S and

a ∈ L, we have that a⇒ b ∈ S.
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2.17 Proposition. [JoII, p. 481] Let L be a locale, there is a bijection between the set of nuclei of

L and the set of exponential ideals of L which are closed under arbitrary infima.

Proof. Let j be a nucleus, then Lj is closed under arbitrary infima being a reflective subcategory of

L, in this case, j : L → Lj is right adjoint to the identity because of (N1) and (N2). For the other

implication we use a result that we assume without proof [JoI, p. 185] and which tells us that the

satisfaction of (N3) by j, that is to say, preservation of finite limits, is equivalent to the fact that Lj

be an exponential ideal. Given an exponential ideal closed under abitrary infima S, we have that

the inclusion S → L preserves arbitrary limits, and so it has a right adjoint j. Given that j is right

adjoint to a functor that acts as the identity map we have (N1) and (N2). In order to obtain (N3) we

used the result mentioned above. Thus, we have S = Lj .

The following lemma is a corollary of the above characterization.

2.18 Lemma. The intersection of fixed point sets of nuclei (as sets) is again a fixed point set.

Thus arbitrary intersection of regular sublocales correspond to intersection as sets of the corre-

sponding images of their fixed points sets. We can now define density as follows.

2.19 Definition. A regular sublocaleM of L is a dense sublocale, iff the intersection ofM with

any open, non trivial sublocale of L is nonempty.

Is easy to obtain an alternative definition of density in terms of the associated nucleus.

2.20 Lemma. Let k be a nucleus on L. Lk is a dense sublocale of L iff k(0) = 0.

Proof. Let Lk be a dense sublocale, if k(0) = a, we have Lja ∩ Lk = {1}, since if b ∈ Lja ∩ Lk,
b = k(0)⇒ k(b) = 1. So a must be 0.

Let’s suppose that k(0) = 0 and let a be in L. We have to show that ¬a ∈ Lk ∩ Lja . We have

¬a ∈ Lk since

¬a = a⇒ 0 = a⇒ k(0) = k(a)⇒ k(0),

and so we can easily conclude k(¬a) ≤ ¬a, the other inequality is obtained directly. ¬a ∈ Lja

follows from the laws of intuitionistic logic. If a 6= 0, then ¬a 6= 1.

With the above proof in mind we get the following result.

2.21 Theorem. Isbell’s density theorem [PP, p. 40]. L¬¬ is dense, and it is the intersection of all

dense sublocales of L.
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2.22 Example. • If a ∈ L, then the open sublocale ↓ a is dense in L iff a ⇒ 0 = ¬a = 0, as

in the topological case, this is equivalent to the assertion that, given b ∈ L, if b ∧ a = 0, then

b = 0. The closed sublocale ↑ a is dense iff a ∨ 0 = a = 0.

• If a ≤ b ∈ L, then ↓ a is dense in ↓ b iff ¬a ∧ b = 0, as in the topological case this is

equivalent to the fact that, for c ≤ b, if c ∧ a = 0, then c = 0.

• If a ∈ L, then the open sublocale ↓ (a∨¬a) is dense in L since ¬(a∨¬a) = ¬a∧¬¬a = 0.

Next we define an adjunction between the category of locales Loc, and the category of topo-

logical spaces Top that will allow us to establish which topological spaces can be reconstructed

from their lattices of open sets, and which locales can be obtained as the lattices of open sets of

topological spaces. In this way we can give examples of locales that do not arise from topological

spaces. We follow the detailed proof which is found in [Bo94, p. 61-73]. For the next definition,

we note that {0, 1} is the terminal object of the category of locales since, given a locale L the only

morphism f : L → {0, 1} is given by f∗(0) = 0 y f∗(1) = 1.

2.23 Definition. A point of a locale L is a morphism p : 1→ L of locales, where 1 is the terminal

locale.

2.24 Example. Let (X, T ) be a topological space, for x ∈ X we can define the point px : 1 → T
such that p∗x(U) = 1 iff x ∈ U.

2.25 Lemma. [Bo94, p. 62] There is a bijective correspondence between points of a locale and

elements u ∈ L which satisfy u 6= 1 and, for all a, b ∈ L, if a ∧ b ≤ u, then a ≤ u o b ≤ u. The

mentioned elements of L are called prime elements.

Proof. Let p : 1→ L, we define the prime element u =
∨
{a : p∗(a) = 0}. If u is a prime element,

we define a point p such that, for a ≤ u, p∗(a) = 0, and p∗(a) = 1 in other case. These mappings

are the inverse of each other.

We associate a topological space to each locale in a natural fashion.

2.26 Lemma. [Bo94, p. 64] Let L be a locale. We define a topology in the set of points of L,
which we denote by Sp(L) (the spectrum of L). The open sets of this topology are given by Oa =

{p ∈ Sp(L) : p∗(a) = 1}, for a ∈ L. That this sets constitute a topology can be inferred from the

satisfaction of the following equalities:

O0 = ∅, O1 = Sp(L), O∨
ai =

⋃
Oai , Oa∧b = Oa ∩ Ob.
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The above definition can be extended to a functor between Loc and Top which turns out to be

the right adjoint of the forgetful functor.

2.27 Proposition. [Bo94, p. 65] Consider the forgetful functor O : Top → Loc which maps the

space (X, T ) to its lattice of open sets T and a continuous function between topological spaces to

its associated morphism of locales. This functor admits the spectrum functor Sp : Loc → Top

which maps L to the topological space Sp(L) as its right adjoint.

Proof. We define the spectrum functor for morphisms as follows. If f : L → M, Sp(f) :

Sp(L) → Sp(M) maps p into f ◦ p. The unity of the adjunction is defined for a topological

space (X, T ) as the continuous function η(X,T ) : X → Sp(T ) which maps x 7→ px. The counity

define is defined for a locale L to be the morphism of locales εL : O(Sp(L)) → L, which maps

ε∗L(a) = Oa.

The former adjunction gives rise to an equivalence of categories if we ask that the corresponding

unity and counity are isomorphisms. This leads us to the next definition.

2.28 Definition (Locale with enough points, sober topological space).

• A locale L is a locale with enough points iff the morphism εL is an isomorphism.

• A topological space (X, T ) is sober iff the morphism η(X,T ) is a homeomorphism.

By definition the morphism ε∗L is surjective but it can be non injective. The morphism η(X,T )

can be neither injective nor surjective. The spectrum of a locale is a sober topological space and if

a topological space is Hausdorff, then it is sober. Besides, we have that if (X, T ) is a topological

space, then T has enough points. Based on this we can give examples of locales that do not arise as

the lattice of open sets of a topological space.

2.29 Example. Let (X, T ) be a Hausdorff topological space without isolated points, and let’s con-

sider the locale of regular elements of T , T ¬¬ the least dense sublocale. These elements constitute

a Boolean algebra [Bo94, p. 11]. Let’s see that the former algebra has no points. We can show this

by showing that it has no prime elements. Let’s suppose that there is a prime element U ∈ T ¬¬,
then U is not the top element. Since U is regular, U equals the interior of U and then U 6= X. There

is some x /∈ U, and some open set that contains x and do not intersect U, as there is no isolated

points in X there is some other element y 6= x in this open set. Since we are in a Hausdorff space
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we can choose open sets V and W such that x ∈ V, y ∈ W and V ∩W = ∅. ¬¬V and ¬¬W are

regular elements and

¬¬V ∩ ¬¬W = ¬¬(V ∩W ) = ¬¬∅ = ∅ ⊆ U.

And then, as U is a prime element, ¬¬V ⊆ U or ¬¬W ⊆ U, and we have x ∈ U or y ∈ U, which

is impossible. As this locale has no points, it can not be the lattice of open sets of a topological

space.

2.30 Theorem. [Bo94, p. 73] The category of locales with enough points (and locale morphisms)

is equivalent to the category of sober topological spaces.

Proof. The spectrum of a locale is a sober topological space, and the lattice of open sets of a

topological space is a locale with enough points, hence the adjunction between topological spaces

and locales can be restricted to an adjunction between the full subcategory of sober topological

spaces and the full subcategory of locales with enough points. This adjunction turns out to be an

equivalence of categories since, by definition, the unities and counities of the adjunction are now

isomorphisms.

We can conclude also that if a locale T arises from a topological spaces then, as it has enough

points, it is isomorphic to the lattice of open sets of some sober topological space.

Next we define connected a compact locales.

2.31 Definition (Compact locale, connected locale).

• An element u of a locale L is said to be connected iff for all w, v ∈ L, if u = w ∨ v and

w ∧ v = 0, we have w = 0 or v = 0.

• A locale L is connected iff the element 1 ∈ L is connected.

• Let a, b be elements of a locale L, we say that a << b (a is way below b) if for all family

(ci)i∈I of elements of L such that b ≤
∨
i∈I ci, there is a finite subset J ⊆ I such that

a ≤
∨
j∈J cj .

• An element a ∈ L is compact iff a << a. L is compact iff 1 ∈ L is compact.
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Chapter 3

Logic of sheaves of structures on a locale

Topological sheaves arose in Weyl’s work on Riemann surfaces, even though the current defini-

tion is due to Leray and Cartan and their full development and application to Serre, Godement

and Grothendieck. The work on topological sheaves led to the invention of Grothendieck toposes,

which can be thought of as generalized sheaf categories, and elementary Lawvere toposes, which

are a simplification of Grothendieck toposes. In elementary toposes it is possible to define some

high order semantics, known as Kripke-Joyal, which turns out to satisfy the laws of intuitionistic

logic. The laws that define this semantics can be obtained in a natural way from a pointwise logic

in sheaves of first order structures [Ca95]. This pointwise logic can be used to force semantics on

open sets in such a way that the epistemic principle of continuity of truth is satisfied, all statement

that holds in a point must hold in a neighborhood of the point. This generalizes the behavior of

mathematical assertions such as analyticity of a complex variable function in a point and equality

between sections of a sheaf.

Logic of sheaves of first order structures on a locale would occupy an place between Caicedo’s

semantics for first order structures and Kripke-Joyal semantics. An epistemic motivation to study

such logic can be found again in the principle of continuity of truth. Since the points are no more

than ideal limits of observable surroundings, we ask: what happens if in order to define the seman-

tics we forget about points from the beginning? In what follows we try to answer this question.

Although we could not describe sheafification (the relation between categories of presheves and

sheaves of structures) analogously to the case of sheaves of sets, via tale morphisms, we will de-

scribe it following the lines of Fourman and Scott’s work [FS79], who studied a category which,

under certain restrictions, turns out to be isomorphic to the one of sheaves of structures.

In [FS79], Fourman and Scott define the category of Ω-sets, where Ω is a locale and an Ω-set



is set with a relation which mimics the behavior of equality between sections of the presheaf. They

show that the category of Ω-sets is equivalent to the one of sheaves of sets on Ω and they describe in

which way a presheaf of sets can be transformed in a sheaf by using the category of complete Ω-sets,

a subcategory of Ω-sets isomorphic to the category of sheaves of structures. Although in [FS79] it

is defined the concept of Ω-structure, there is no proof the equivalence between this category and

the one of sheaves of structures, and even though it is evident that the category of sheaves of sets is

reflective in the category of presheaves of sets, this is also not there.

In what follows it is shown, using the techniques in [FS79], that the category of Ω-structures,

with some restrictions, is equivalent to the category of sheaves of structures on Ω and that the

category of sheaves of structures on Ω is reflective in the category of presheaves of structures on Ω.

As a corollary we obtain an isomorphism between the category of complete Ω-sets and the one of

sheaves of structure on Ω.We will quote the proof of the isomorphism betweeen Ω-sets and sheaves

of sets on Ω as it appears in [Bo94, p. 144-167], but we will eventually make references to [FS79].

3.1 Sheafification

In what follows we fix a locale Ω. First we define the concept of presheaves and sheaves, and

establish a motivation for the concepts of Ω-set and Ω-structure.

1.1 Definition. A preshaf of sets on Ω is a contravariant functor F : Ω→ Set. Given v ≤ u in Ω,

we let ρuv denote F (u→ v) and x|v denote ρuv (x) if there is no ambiguity.

The category of presheaves of sets on Ω is the category SetΩop , the morphisms being natural

transformations between functors.

1.2 Definition. Let F be a presheaf of sets on Ω and (ui)i∈I be a family of elements of Ω. The

family (xi ∈ F (ui))i∈I of the preasheaf F is said to be compatible when for i, j ∈ I,

xi|ui∧uj = xj |ui∧uj .

1.3 Definition. A presheaf of sets F on Ω is said to be separated when, given u =
∨
i∈I ui ∈ Ω

and x, y ∈ F (u), if for all i ∈ I x|ui = y|ui , then x = y.

1.4 Definition. A presheaf of sets F on a locale Ω is said to be a sheaf when, given u = ∨i∈Iui ∈ Ω

and a compatible family (xi ∈ F (ui))i∈I of F, there is a unique x ∈ F (u) such that, for all i ∈ I,
x|ui = xi. The element x will be called the gluing of the family (xi)i∈I .
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From now on, we use τ to denote a first order language.

1.5 Definition. A preshaf of structures of signature τ on Ω is a contravariant functor F : Ω→ Stτ

from the locale Ω into the category of first order structures of signature τ whose morphisms are

homomorphism of structures.

From now on we will use the notation ā = (a1, . . . , an) to denote tuples of elements, as well

as b̄, c̄, etc. The following definition is analogous to the definition of sheaves of structures of first

order on topological spaces given in [Ca95].

1.6 Definition. A sheaf of structures of signature τ on Ω is a presheaf of structures on Ω, F, which

when considered as presheaf of sets is a sheaf and such that given a symbol of relation R of arity n

in τ , u =
∨
i∈I ui ∈ Ω and ā ∈ F (u)n, if for all i ∈ I RF (ui)(a1|ui , . . . , an|ui), then RF (u)(ā).

The category of sheaves of structures on Ω is the full subcategory of StτΩop whose objects are

sheaves of structures.

1.7 Example. In the examples of sheaves that we will study the locale will always come from

topological spaces since we did not find interesting examples of sheaves on locales without points.

However, to study these examples we will often use techniques coming from locale theory when we

find it convenient.

• Let (X, T ) and (Y,S) topological spaces. We define, for u ∈ T , F (u) = {f | f : u →
Y , f continuous}, with the usual restrictions ρuv (f) = f |v, if v ⊆ u. This presheaves are

evidently sheaves of sets. Depending on the topological space we can ask that the functions

be more than continuous, smooth, holomorphic, etc.

• A case specially interesting of the former example is the sheaf of rings of germs of holomor-

phic functions G s.t. G(U) = ({g : U → C | g is holomorphic in U},+, .), for U ⊆ C,
where the sum and product are defined pointwise.

• Let p : (Y,S)→ (X, T ) a local homomorphism, for U ∈ T let

G(U) = {s | U → Y : s is continuous and p ◦ s = idU},

then G is a sheaf, known as the sheaf of continuous sections of p. The above presentation of

sheaves is called topological sheaf or tale space. This example is important because one can

prove that every sheaf (of sets or structures) on a topological space is isomorphic to a sheaf
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of this kind. Furthermore, this construction allows us to describe the sheafification functor

in the topological case. The case of sheaves of sets is explained in detail in [Bo94, p. 113-

123]. In the case of sheaves of structures, it must be asked that for x ∈ X, the fiber p−1(x)

be a first order structure of signature τ, so that G(U) becomes a structure of signature τ as

substructure of the product
∏
x∈U p

−1(x). Additional conditions of continuity must be asked

for the interpretation of functions and relations [Ca95, p. 10].

• A specially interesting case of the former example is the sheafification of a ring. Let R be a

commutative ring with unity and consider its set of prime ideals Sp(R), the spectrum of R,

with the Zariski topology generated by basic open sets

Oa = {J | J prime ideal of R and a /∈ J},

for a ∈ R. Sp(R) is a sober topological space and eachOa turns out to be compact [Bo94, p.

175]. For every prime ideal J we can consider the ring R localized in J, RJ = R(R \ J)−1

[Bo94, p. 173] and define the topological sheaf

π :
∐

J∈Sp(R)

RJ → Sp(R), x ∈ RJ → J,

where the topology of
∐
J∈Sp(R)RJ is the final topology induced by sections

sab : Ob →
∐

J∈Sp(R)

RJ , J → a

b
∈ RJ

for a, b ∈ R. This tale space is known as the structural space of R. The sheaf of continuous

sections of this structural space of R [Bo95, p. 177] given by π is in fact a sheaf of rings

[Bo95, p. 178]. It is worth to note that interpretations of the constants 0 y 1 are sections s0
1 y

s1
1 respectively.

The category of Ω-sets implies a slight change of view. Instead of considering the sheaf as a

whole we consider a generating subset.

1.8 Definition. [Bo94, p. 138] Let F be a sheaf of sets on Ω. We say that a family, A, of elements

of
∐
u∈Ω F (u) is a family of generators forF if for all u ∈ Ω and a ∈ F (u), there is a covering

u =
∨
i∈I ui and elements ai ∈ A, such that a|ui = ai|ui .

1.9 Example. If F is a sheaf of sets on Ω and {u}u∈B is a base for Ω (that is to say B ⊆ Ω and for

u ∈ Ω there is {ui}i∈I , I ⊆ B such that u =
∨
i∈I ui), then

∐
u∈B F (u) is a family of generators

for F.

26



A family of generators, A, allows us to reconstruct the sheaf in a unique way. If an element

does not belong to A it will be at least a gluing of some restrictions of elements of A. All we need

to know in order to reconstruct this element is how does it compare to all individuals in A. With the

purpose of coding this information in mind we introduce a relation of comparison between elements

of a sheaf which defines the maximum level in which the restriction of the elements are equal.

1.10 Definition. [Bo94, p. 139] Let F be a sheaf on Ω. Given u, v ∈ Ω, a ∈ F (u) and b ∈ F (v)

we define

[a ≈ b] =
∨
{w ∈ Ω | w ≤ u ∧ v, a|w = b|w},

where the join is a maximum since F is a sheaf.

We will be interested in extracting the essential properties of the relation ≈, which will be used

to define the objects in the category of Ω-sets. These are sets with an equality which takes values in

Ω instead of {0, 1}.

1.11 Lemma. [Bo94, p. 139] Let F be a sheaf of sets on a locale Ω andA be a family of generators

for F. For all a, b, c ∈ A we have:

• [a ≈ b] = [b ≈ a]

• [a ≈ b] ∧ [b ≈ c] ≤ [a ≈ c]

In this way, we can see how sheaves of sets can be regarded as sets with an equality which takes

values in Ω. Morphisms between sheaves can also be described using the information coming from

the information of each morphism in relation to a generating family. However, a morphism between

sheaves does not necessarily defines a function between generating subsets since the image of some

element might not belong to the generating subset of the target sheaf, however it must be a gluing

of the generating subset. In order to reconstruct the function we need to compare the image of an

element with all the elements in the generating family of the target sheaf. The following lemma

motivates the definition of morphisms in the category of Ω-sets.

1.12 Lemma. [Bo94, p. 140] Let A and B be families of generators of the sheaves of setsF

and G over Ω respectively. Let α : F → G be a morphism of sheaves where for all u ∈ Ω,

αu : F (u)→ G(u) is the level u of the morphism α. We define the function

A×B → Ω, (a, b) 7→ [b ∼ α(a)] := [b ≈ αu(a)]

for all a ∈ F (u). For a, a′ ∈ A and b, b′ ∈ B the following relations hold:
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(1) [b ≈ b′] ∧ [b′ ∼ α(a)] ≤ [b ∼ α(a)].

(2) [b ∼ α(a)] ∧ [a ≈ a′] ≤ [b ∼ α(a′)].

(3) [b ∼ α(a)] ∧ [b′ ∼ α(a)] ≤ [b ≈ b′].

(4) [a ≈ a] =
∨
b∈B[b ∼ α(a)].

In the case where A and B are not just families of generators but the whole sheaf, the fist three

conditions imply that α is a natural transformation, while the fourth indicates that the image of an

element a ∈ F (u) belongs to G(u). As we will show later, the relation [b ∼ α(a)] encodes all the

information of morphism α, giving descriptions of each α(a). The following lemma justifies the

definition of the composition of morphisms in the category of Ω-sets.

1.13 Proposition. [Bo94, p. 140] Let A,B,C be families of generators of the sheaves of sets on Ω

F,G and H respectively. Let α : F → G and β : G → H be two morphisms of sheaves, using the

previous notation, we have

[c ∼ β ◦ α(a)] =
∨
b∈B

[c ∼ β(b)] ∧ [b ∼ α(a)]

for all a ∈ A and c ∈ C.

Now we define the elements of the category of Ω-sets, our examples being families of generators

of sheaves of sets.

1.14 Definition. [Bo94, p. 144] An Ω-set is a pair (A,≈), where A is a set and≈ is a function, also

called Ω-equality

≈: A×A→ Ω, (a, b 7→ [a ≈ b]),

which satisfies the following for all a, b, c ∈ A:

(C1) [a ≈ b] = [b ≈ a].

(C2) [a ≈ b] ∧ [b ≈ c] ≤ [a ≈ c].

The following technical lemma will be used often.

1.15 Lemma. [Bo94, p. 144] Let A be an Ω-set. For all a, b ∈ A the following relation holds

[a ≈ b] ≤ [a ≈ a].
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Next we define morphisms between Ω-sets. This will allow us to define the category of Ω-sets.

Our examples again are morphisms between families of generators of sheaves of sets.

1.16 Definition. [Bo94, p. 145] LetA,B be Ω-sets. A morphism of Ω-sets α : A→ B is a mapping

A×B → Ω, (a, b) 7→ [b ∼ α(a)],

which satisfies the following for all a, a′ ∈ A and b, b′ ∈ B:

(M1) [b ≈ b′] ∧ [b′ ∼ α(a)] ≤ [b ∼ α(a)].

(M2) [b ∼ α(a)] ∧ [a ≈ a′] ≤ [b ∼ α(a′)].

(M3) [b ∼ α(a)] ∧ [b′ ∼ α(a)] ≤ [b ≈ b′].

(M4) [a ≈ a] =
∨
b∈B[b ∼ α(a)].

The following technical lemma will be used often.

1.17 Lemma. [Bo94, p. 145] Let α : A → B a morphism of Ω-sets. If a ∈ A and b ∈ B,

[b ∼ α(a)] ≤ [a ≈ a] ∧ [b ≈ b].

Now we can define the category of Ω-sets.

1.18 Proposition. [Bo94, p. 145] Let Ω be a locale. Ω-sets and morphisms of Ω-sets constitute a

category if we define composition for α : A→ B and β : B → C by

[c ∼ β ◦ α(a)] =
∨
b∈B

[c ∼ β(b)] ∧ [b ∼ α(a)]

for all a ∈ A and c ∈ C. The identity 1A : A→ A of an Ω-set A is given by

[a ∼ 1A(a′)] = [a ≈ a′],

for a, a′ ∈ A. We denote this category by Ω-Set.

1.19 Example. If A is a set, consider the {0, 1}-equality given by [a ≈ b] = 0 iff a 6= b. This is

a {0, 1}-set, (C1) and (C2) reduced to reflexivity and transitivity of equality. Set turns out to be

equivalent to the category of {0, 1}-sets.

In order to work with morphisms of Ω-sets we prove the following lemma. If A,B are sets and

f, g : A → B are functions we have that f = g iff for all b ∈ B and a ∈ A, if b = f(a) then

b = g(a). The next lemma mimics the former assertion.
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1.20 Lemma. [Bo94, p. 147] Let Ω be a locale and α, β : A → B morphisms of Ω-sets. The

following assertions are equivalent:

(1) α = β

(2) For all a ∈ A and b ∈ B we have [b ∼ α(a)] ≤ [b ∼ β(a)].

We will consider the category of Ω-sets and Ω-structures as accessories in the proof of the

existence of a sheafification functor (which describes the relation between the categories of sheaves

and presheaves of structures). The concept of complete Ω-set, equivalent to that of sheaf of sets,

plays an important role in the description of the sheafification functor. In order to define it we will

use the concept of singleton. Let F be a sheaf and A be a family of generators, we have said that

in order to recover an element m ∈
∐
u∈Ω F (u) we just need to know how does m compare with

the rest of the elements in A, that is {[m ≈ a]}a∈A. The idea behind the definition of singleton is

that each of these should be a coherent description of an element that may or may not be in A. Each

family of the form {[m ≈ a]}a∈A is one of these descriptions.

1.21 Definition. Let A be an Ω-set. A singleton of A is a mapping σ : A → Ω such that, for all

a, b ∈ A the following holds:

(1) σ(a) ∧ σ(b) ≤ [a ≈ b],

(2) [a ≈ b] ∧ σ(b) ≤ σ(a).

As we have said, each element in an Ω-set induces one of these descriptions.

1.22 Lemma. Let A be an Ω-set and m ∈ A. The mapping σm : A → Ω, defined by σm(a) =

[m ≈ a], for all a ∈ A, is a singleton.

In fact, if F is a sheaf,A a family of generators andm ∈
∐
u∈Ω F (u), then σm : A→ A defined

by a 7→ [m ≈ a] is still a singleton. The following lemma, besides proving that any presheaf is

naturally an Ω-set, allows us to give an alternative characterization of separated presheaf and sheaf

in terms of the mapping m 7→ σm.

1.23 Lemma. Let F be a presheaf of sets on Ω. The setA =
∐
u∈Ω F (u) is an Ω-set when endowed

with the Ω-equality defined by

[a ≈ b] =
∨
{w ∈ Ω : a|w = b|w},

for all a, b ∈ A. For the mapping σ : A→ σ(A) we have:
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• σ is injective iff F is a separated presheaf.

• σ is bijective iff F is a sheaf.

The first assertion is proved in [Si01, p. 38]. The proof for the second assertion is ours, although

in [Bo94, p. 142] the implication⇐ is proved with a little mistake that we amend here.

Proof. Let’s see that the Ω-equality defines in fact an Ω-set. Symmetry is evident. For transitivity

let a, b, d be elements of A. Let’s denote I = {w ∈ Ω : a|w = b|w}, J = {w ∈ Ω : b|w = d|w} y

K = {w ∈ Ω : a|w = d|w}, then we have

[a ≈ b] ∧ [b ≈ d] =

( ∨
w∈I

)
∧
( ∨
u∈J

u

)
=
∨
u∈J

∨
w∈I

w ∧ u

≤
∨
v∈K

v

= [a ≈ d],

since if w ∈ I and u ∈ J, then a|w = b|w y b|v = d|v, so a|w∧v = (a|w)|w∧v = (b|w)|w∧v =

(b|v)|w∧v = (d|v)|w∧v = d|w∧v. For a ∈ F (u), we have [a ≈ a] = u.

We show that σ is bijective iff F is a sheaf. Let’s assume that σ is bijective and let ai ∈ F (ui),

for i ∈ I , be a compatible family and u =
∨
i∈I ui. We define the mapping

ρ : A → Ω

a 7→
∨
i∈I

[a ≈ ai].

The fact that ρ is a singleton follows from a reasoning similar to the used above. By surjectivity

there is m ∈ A such that ρ = σm. For i ∈ I we have

[m ≈ ai] = σm(ai) = ρ(ai) =
∨
j∈I

[ai ≈ aj ] = [ai ≈ ai] = ui,

so that

[m ≈ m] = σm(m) = ρ(m) =
∨
i∈I

[m ≈ ai] =
∨
i∈I

ui = u,

this means that m ∈ F (u). Let i be an element of I, using the presheaf separation we obtain

m|ui = ai. We have uniqueness since F is separated, being σ injective.
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Assume now that F is a sheaf. Then F is separated and we have the injectivity of σ. Let ρ be

a singleton, we want to show that there is m ∈ F such that σm = ρ. Let’s denote u =
∨
a∈A ρ(a).

Leta be an element of A, since ρ(a) = ρ(a) ∧ ρ(a) ≤ [a ≈ a] we can define the family (a|ρ(a) ∈
F (ρ(a)))a∈A, that turns out to be compatible since F is separated. Hence there is a (unique) gluing

m ∈ F (u) which satisfies, for a ∈ A, m|ρ(a) = a|ρ(a).

Let a be in A, we have that ρ(a) ≤ [m ≈ a]. By using the definition of singleton we get

ρ(a) = [a ≈ m] ∧ ρ(a) ≤ ρ(m), so that
∨
a∈A ρ(a) = ρ(m) = u. In conclusion we note that

[m ≈ a] = [a ≈ m] ∧ [m ≈ m] = [a ≈ m] ∧ u = [a ≈ m] ∧ ρ(m) ≤ ρ(a).

Hence σm = ρ.

In a separated sheaf, two elements with the same description are equal and in any sheaf, each

description gives rise to an element in a unique way. This motivates the definition of complete Ω-set

that will be equivalent that of sheaf of sets on Ω. The above lemma tells us half of it. Restrictions

and levels will be defined in all complete Ω-sets, but this will be done more generally for the case

of Ω-structures.

1.24 Definition. Let A be an Ω-set. Let σ(A) be the set of singletons of A. We say that A is a

complete Ω-set when the mapping

A→ σ(A), m 7→ σm

is bijective.

The construction of the sheafification functor for presheaves of structures uses the category of

complete Ω-structures (in analogy with Ω-sets) and of complete Ω-structures (in analogy with com-

plete Ω-sets). In order to define the closest sheaf to a presheaf of structures we assing an Ω-structure

to it. This Ω-structure will be isomorphic to some complete Ω-structure, and this will be naturally a

sheaf of structures. Each of these transformations will be given by a functor. With the former sketch

in mind we will go through the technical details of the definition of the category of Ω-stuctures.

In order to define Ω-structures we need interpretations of functions symbols as is the case for

first order structures. The definition given in [FS79] requires that the interpretation of a function

symbol be a mapping from An (set product) into A, which will contradict our motivation since

families of generators of a sheaf won’t be natural examples (if A is a family of generators, it is

not necessary that the image of all elements in An be in A). With the goal of generalizing our
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definition of Ω-set and to be faithful to our motivation, the same of Fourman and Scott, that is,

that families of generators be natural examples,we define the product in the category of Ω-sets, and

let interpretations of function symbols be morphisms of Ω-sets rather than mappings of sets. This

definition of product may result strange for a reader familiar with sheaf theory. When we define

complete Ω-structures, we will be interested in defining the product in a more usual way.

1.25 Lemma. Let A be an Ω-set. The set An, endowed with the Ω-equality given by

[(ā) ≈ (b̄)] =

n∧
i=1

[ai ≈ bi],

for all ā, b̄ ∈ An is an Ω-set and is the product of n-times A in the category of Ω-Set.

Proof. That An with the defined Ω-equality is an Ω-set follows from the fact that A is an Ω-set.

Canonical projections πi : An → A are defined, for all c, a1, . . . , an ∈ A and 1 ≤ i ≤ n, by the

equation

[c ∼ πi(ā)] = [c ≈ ai] ∧ [ā ≈ ā].

Applying transitivity and the fact that the identity is a morphism of the category we have that

each πi is an Ω-morphism.

If B is an Ω-set, and pi : B → A Ω-morphisms for 1 ≤ i ≤ n, we can define p : B → An such

that for all ā ∈ An and b ∈ B,

[ā ∼ p(b)] =

n∧
i=1

[ai ∼ pi(b)].

To see that p is an Ω-morphism we note that (M1)-(M3) follow from the fact that each pi is a

morphism of Ω-sets. For (M4), let b be an element of B, then

∨
ā∈An

[ā ∼ p(b)] =
∨
ā∈An

( n∧
i=1

[ai ∼ pi(b)]
)

=

( ∨
a1∈A

[a1 ∼ p1(b)]

)
∧ · · · ∧

( ∨
an∈A

[an ∼ pn(b)]

)
= [b ≈ b] ∧ · · · ∧ [b ≈ b]

= [b ≈ b].

The fact that for 1 ≤ j ≤ n, we have πj ◦ p = pj follows by an easy calculation. Let p∗ :

B → An be a morphism of Ω-sets such that for all 1 ≤ i ≤ n, πi ◦ p∗ = pi, we will show p = p∗.
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Is easy to see that if ā ∈ An and b ∈ B, [ā ∼ p(b)] ≤ [ā ∼ p∗(b)] and by the equality between

Ω-morphisms lemma we have p = p∗.

If f : A → A is a mapping of sets, the notion of (f, . . . , f) : An → An plays a role in the

definition of first order structure, we need an analog in the category of Ω-sets.

1.26 Lemma. Let A and B be Ω-sets and α : A → B an Ω-morphism. If πAi : An → A,

πBi : Bn → B denote the i-th projection of the corresponding product for 1 ≤ i ≤ n, then there is

a unique Ω-morphism (α, . . . , α) : An → Bn such that for 1 ≤ i ≤ n πBi ◦ (α, . . . , α) = α ◦ πAi .

An
(α,...,α)//

πAi
��

Bn

πBi
��

A
α // B

Proof. This is evident from the fact that Bn is the product of n times B. If ai ∈ A and bi ∈ B, for

all 1 ≤ i ≤ n we have

[(b̄) ∼ (α, . . . , α)(ā)] =
n∧
i=1

[bi ∼ α(ai)].

1.27 Lemma. With the notation of the above lemma, if α : A→ B and β : B → C are morphisms

of Ω-sets, then (β ◦ α, . . . , β ◦ α) = (β, . . . , β) ◦ (α, . . . , α) as follow by uniqueness of (α, . . . , α)

and the commutativity of the following diagram.

An
(α,...,α)//

πAi
��

Bn

πBi
��

(β,...,β)// Cn

πCi
��

A
α // B

β // c

In order to define interpretations of constant symbols in Ω-structures we need a morphism from

the terminal Ω-set into the Ω-structure universe. This morphisms are a particular case of descriptions

of elements or singletons.

1.28 Lemma. In the category of Ω-sets, the terminal object is the set {∗} (singleton) endowed with

the Ω-equality [∗ ≈ ∗] = 1.

Proof. If A is an Ω− set, we can define the morphism α : A → {∗} by the equation [∗ ∼ α(a)] =

[a ≈ a]. Satisfaction of (M1)-(M3) follows from the features of A’s Ω-equality and [∗ ≈ ∗] = 1.

(M4) is satisfied trivially and guarantees the uniqueness of α.
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The following definition is necessary for interpreting constant symbols in Ω-structures.

1.29 Definition. A point of an Ω-set A is a morphism α : {∗} → A.

Points are no more that singletons which describe globally defined elements, in sheaves of

structures these will define global sections as in [Ca95].

1.30 Lemma. LetA be an Ω-set. The points ofA are in bijective correspondence with the singletons

σ of A which satisfy
∨
a∈A σ(a) = 1.

Proof. If α : {∗} → A is a point of A, we can define the singleton σα : A → Ω such that, for all

a ∈ A σα(a) = [a ∼ α(∗)]. Axioms for singleton are satisfied and∨
a∈A

σα(a) =
∨
a∈A

[a ∼ α(∗)] = [∗ ≈ ∗] = 1.

On the other hand, if σ is a singleton such that
∨
a∈A σ(a) = 1 we can define ασ : {∗} → A by

the equation [a ∼ ασ(∗)] = σ(a). (M1) to (M3) for ασ follows from the fact that σ is a singleton

and (M4) follows from
∨
a∈A σ(a) = 1. The above mappings between points and singletons σ such

that
∨
a∈A σ(a) = 1 are the inverse of each other and hence bijective.

We are ready to define Ω-structures. Our definition will differ from the one in [FS79] mainly

in that we won’t ask interpretation of function and constant symbols to be functions and globally

defined elements(i.e. such that [a ≈ a] = 1) of the Ω-sets but rather descriptions of functions (Ω-

morphisms) and global descriptions of elements (points), being consistent with our motivation of

considering families of generators instead of preshaves as our main example. In [FS79] it is defined

the following notion:

1.31 Definition. [FS79, p. 341]Given A an Ω-set, we define for all a, b ∈ A,

[a ≡ b] = ([a ≈ a]⇒ [a ≈ b]) ∧ ([b ≈ b]⇒ [a ≈ b])

=
∨
{c : c ∧ [a ≈ a] ∧ [b ≈ b] ≤ [a ≈ b]}

We say that an element of an Ω-set A, a, is defined in u ∈ Ω if u ≤ [a ≈ a]. The interpretations

of functions and relations in [FS79], more than preserving the notion of ≈, as in our case, preserve

the notion ≡ . The difference is that, for example in the case of presheaves, a and b turn out to be

equivalent not only where its restriction coincides but also where non of them is defined. Following

[Ca95] we just care about what happens when a and b are defined. The above definition is just

there to highlight the difference between the definition of Ω-structures in [FS79] and ours. Another

difference is that we ask, under the same motivation, the interpretations of relations to be restricted.
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1.32 Definition. Let τ be a first order language. An Ω-structure, A, of signature τ consists of:

• An Ω-set A.

• For each constant symbol c of τ a point cA : {∗} → A.

• For each function symbol f of arity n an Ω-morphism fA : An → A.

• For each relation symbol R of arity n a mapping RA : An → Ω, where if ā ∈ An, we denote

RA(ā) by [RA(a1, . . . , an)]. This mapping must satisfy for all 1 ≤ i ≤ n and ai, bi ∈ A :

[Extensionality]
∧n
i=1[ai ≈ bi] ∧ [RA(ā)] ≤ [RA(b̄)].

[Restriction] [RA(a1, . . . , an)] ≤
∧n
i=1[ai ≈ ai].

Sometimes we will use cA, fA andRA when there is no possible misunderstanding. Since {∗} is

the terminal object of the category Ω-Set we Can consider constant symbols as functional symbols

of arity 0 as in the classic case. From now on we will use n to denote the arity of function and

relation symbols of τ, when there is no confusion.

1.33 Definition. If A,B are Ω-structures of signature τ, a morphism of Ω-structures α : A→ B is

a morphism of Ω-sets α : A→ B which satisfies:

• For each constant symbol c in τ α ◦ cA = cB.

• For each function symbol f in τ α ◦ fA = fB ◦ (α, . . . , α).

An

fA

��

(α,...,α)// Bn

fB

��
A α

// B

• For each relation symbol R in τ, ā ∈ An and b̄ ∈ Bn,

[RA(ā)] ∧ [(b̄) ∼ (α, . . . , α)(ā)] ≤ [RB(b̄)].

1.34 Lemma. Let α : A → B, β : B → C be morphisms of Ω-structures for τ, the morphism of

Ω-sets β ◦ α : A→ C is in fact a morphism of Ω-structures. 1A : A→ A (the identity of Ω-sets) is

also a morphism of Ω-structures.
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Proof. Let’s see that β ◦ α is a morphism of Ω-structures. If c is a constant symbol, β ◦ α ◦ cA =

β ◦ cB = cC . The condition for function symbols is obtained by lemma 1.27. The condition for

relation symbols follows by an easy calculation.

Let’s show now that 1A is also a morphism of Ω-structures. The condition for constant symbols

is analog to the case of function symbols, so it follows since (1A, . . . , 1A) = 1An . The condition

for relation symbols is extensionality.

The above lemma allows us to define Ω-structures as a category.

1.35 Definition. The category of Ω-structures for a first order language τ is defined by the former

lemma. This category will be denoted by Ω-Stτ .

We have seen that any sheaf of sets is naturally a complete Ω-set. In the same way sheaves of

structures will be complete Ω-structures. In fact, the category of complete Ω-structures is isomor-

phic to the category of sheaves of structures.

1.36 Definition. We say that an Ω-structure for τ, A, is complete when it is complete as an Ω-set.

The following lemma says that any Ω-structure can be naturally completed and hence that any

presheaf can be turn into a sheaf. In [FS79, p. 360] there is a proof for a restricted case of the

definition in objects although, since our definition is different, the proof does not cover our case,

which has never been treated before. The case where τ = ∅, that is to say, the case of Ω-sets, can be

found proven in detail in [Bo94, p. 157]. Basically, given an Ω-structure A, we consider the family

of singletons of A which can be seen naturally as an Ω-structure. We can get an intuition of all the

definitions if we think in the case whereA is a family of generators of a sheaf of sets F, singletons in

this case are descriptions of elements of the sheaf. For example, for the definition of the Ω-equality

between singletons, if ρ is a singleton, ρ(a) is the maximum level in which the restriction of the

element described by ρ, m, is equal to a. If χ is another singleton, the element described by ρ and

the one described by χ, n, must coincide at least in ρ(a) ∧ χ(a). On the other hand, since m and n

are gluings of elements in A, we must have [m ≈ n] =
∨
a∈A ρ(a) ∧ χ(a), and so, this must be the

maximum level in which ρ and χ coincide. Definitions of interpretations of function, constant and

relation symbols admit a similar motivation. The advantage of considering the Ω-structureσ(A) lies

in its completeness (that is, it will be naturally a sheaf of structures) and in the essential fact that, as

an Ω-structure, it is isomorphic to A.

1.37 Lemma. We define a functor σ, from the category of Ω-structures to its full subcategory whose

objects are complete Ω-structures. Let A be an Ω-structure for τ. The set of singletons of A, σ(A),
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is a complete Ω-set with the Ω-equality defined by

[ρ ≈ χ] =
∨
a∈A

ρ(a) ∧ χ(a)

for all ρ, χ ∈ σ(A). Besides, it is a complete Ω-structure if:

• For each constant symbol c in τ, cσ(A) : {∗} → σ(A) is given by the equation

[ρ ∼ cσ(A)(∗)] =
∨
a∈A

ρ(a) ∧ [a ∼ cA(∗)],

for all ρ ∈ σ(A).

• For each function symbol in τ, fσ(A) : σ(A)n → σ(A) is given by the equation

[ρ ∼ fσ(A)(χ̄)] =
∨

b,a1,...,an∈A
[b ∼ fA(ā)] ∧ ρ(b) ∧

n∧
i=1

χi(ai),

for all ρ, χ1, . . . , χn ∈ σ(A).

• For each relation symbol R in τ

[Rσ(A)(ρ̄)] =
∨
ā∈An

[RA(ā)] ∧
n∧
i=1

ρi(ai),

for all ρ̄ ∈ σ(A)n. Let B be a complete Ω-structure of signature τ and let α : A → B be a

morphism of Ω-structures. Then σ(α) : σ(A)→ σ(B) defined by the equation

[χ ∼ σ(α)(ρ)] =
∨

a∈A,b∈B
[b ∼ α(a)] ∧ ρ(a) ∧ χ(b),

for χ ∈ σ(B) and ρ ∈ σ(A), is a morphism of Ω-structures.

Proof. We will assume that σ(A) is a complete Ω-set with the Ω-equality defined, as it is proved in

[Bo94, p. 157]. Let f be a function symbol in τ, we will show that fA is an Ω-morphism. (M1),

(M2) and (M3) follows from the definition of singleton, and the fact that fA is morphism of Ω-sets.
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For (M4), let χ̄ be an element of σ(A)n, then

∨
ν∈σ(A)

[ν ∼ fσ(A)(χ̄)] =
∨

ν∈σ(A)

∨
a,bi∈A

ν(a) ∧
n∧
i=1

χi(bi) ∧ [a ∼ fA(b̄)]

=
∨
b̄∈An

n∧
i=1

χi(bi) ∧
( ∨
a∈A

[a ∼ fA(b̄)] ∧
( ∨
ν∈σ(A)

ν(a)

))

=
∨
b̄∈An

n∧
i=1

χi(bi) ∧
( ∨
a∈A

[a ≈ a] ∧ [a ∼ fA(b̄)]

)

=
∨
b̄∈An

n∧
i=1

χi(bi) ∧
n∧
i=1

[bi ≈ bi]

= [χ̄ ≈ χ̄],

where the third equality holds since for all ν ∈ σ(A) and a ∈ A, ν(a) ≤ [a ≈ a] and σa ∈
σ(A), with σa(a) = [a ≈ a]. The fourth equality follows by (M4) of morphism fA and since

[a ∼ fA(b̄)] ≤ [a ≈ a]. For a constant symbol c the proof is analog to the former, while for a

relation symbol R it takes a simple calculation. Let’s see that σ(α) : σ(A)→ σ(B) is a morphism

of Ω-sets. (M1), (M2) and (M3) follow from definitions. For (M4) we note that if χ ∈ σ(A), then

∨
χ∈σ(B)

[χ ∼ σ(α)(ρ)] =
∨

ρ∈σ(B)

∨
a∈A,b∈B

χ(b) ∧ ρ(a) ∧ [b ∼ α(a)]

=
∨
a∈A

(
ρ(a) ∧

( ∨
b∈B

[b ∼ α(a)] ∧

( ∨
ρ∈σ(B)

χ(b)

)))

=
∨
a∈A

ρ(a) ∧

( ∨
b∈B

[b ∼ α(a)] ∧ [b ≈ b]

)
=
∨
a∈A

ρ(a) ∧ [a ≈ a]

= [ρ ≈ ρ].

If c is a constant symbol and R a relation symbol, the fact that morphism σ(α) is also a morphism

of Ω-structures follows directly from definitions and the fact that α is morphism of Ω-structures.

Let f be a symbol of function, we have that
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[χ ∼ fσ(B) ◦ (σ(α), . . . , σ(α))(ρ̄)]

=
∨

χ̄∈σ(B)n

[χ ∼ fσ(B)(χ̄)] ∧
n∧
i=1

[χi ∼ σ(α)(ρi)]

=
∨

χ̄∈σ(B)n,b∈B,b̄,c̄∈Bn,ā∈An
χ(b) ∧ [b ∼ fB(b̄)] ∧

n∧
i=1

χi(ci) ∧ χi(bi) ∧ ρi(ai) ∧ [ci ∼ α(ai)]

≤
∨

b∈B,b̄,c̄∈Bn,ā∈An
χ(b) ∧ [b ∼ fB(b̄)] ∧

n∧
i=1

[bi ≈ ci] ∧ [ci ∼ α(ai)] ∧ ρi(ai)

≤
∨

b∈B,b̄∈Bn,ā∈An
χ(b) ∧ [b ∼ fB(b̄)] ∧ [b̄ ∼ (α, . . . , α)(ā)] ∧

n∧
i=1

ρi(ai)

=
∨

b∈B,ā∈An
χ(b) ∧ [b ∼ fB ◦ (α, . . . , α)(ā)] ∧

n∧
i=1

ρi(ai)

=
∨

b∈B,ā∈An
χ(b) ∧ [b ∼ α ◦ fA(ā)] ∧

n∧
i=1

ρi(ai)

=
∨

b∈B,ā∈An
χ(b) ∧

n∧
i=1

ρi(ai) ∧
∨
a∈A

[b ∼ α(a)] ∧ [a ∼ fA(ā)]

=
∨

b∈B,ā∈An,ν∈σ(A),a,a′∈A

χ(b) ∧ ν(a) ∧ ν(a′) ∧ [b ∼ α(a)] ∧ [a ∼ fA(ā)]) ∧
n∧
i=1

ρi(ai)

=
∨

ν∈σ(A)

[χ ∼ σ(α)(ν)] ∧ [ν ∼ fσ(A)(ρ̄)]

= [χ ∼ σ(α) ◦ fσ(A)(ρ̄)],

where the third last equalty holds since∨
a∈A

[b ∼ α(a)] ∧ [a ∼ fA(ā)] =
∨

ν∈σ(A),a,a′∈A

ν(a) ∧ ν(a′) ∧ [b ∼ α(a)] ∧ [a′ ∼ fA(ā)].

The last equality follows from the definition of singletons. Finally, functoriality of σ follows by

similar arguments.

The above theorem shows that every Ω-structure A is isomorphic to σ(A), if we associate an

Ω-structure A to each presheaf, as we will do later, the closest sheaf to F will be the corresponding

to σ(A). Although this result is not found in [FS79] is a direct generalization of the case for Ω-sets.

We generalize the proof found in [Bo94, p. 157].
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1.38 Theorem. Let A be an Ω-structure for τ . Then A is isomorphic to the Ω-structure σ(A).

Proof. We define α : A → σ(A) and β : σ(A) → A such that, for all ρ ∈ σ(A) and a ∈ A, we

have [ρ ∼ α(a)] = ρ(a) and [a ∼ β(ρ)] = ρ(a). In [Bo94, p. 157] it is shown that α and β are

morphisms of Ω-sets, and that β ◦α = 1A and α ◦β = 1σ(A). Verifying that α, β define morphisms

of Ω-structures require a simple but not short calculation.

The above result allows us to describe the relationship between the category of Ω-structures and

its full subcategory of complete Ω-structures.

1.39 Corollary. The category Ω-Stτ is equivalent to its full subcategory whose objects are complete

Ω-structures.

We can see each complete Ω-structure as a sheaf of structures on Ω by the next lemma which

is ours. It is not proven in [FS79], since there is not a definition of sheaf of structures. The case

τ = ∅ follows easily from what is shown in [Bo94, p. 162-166]. Later on we prove that the defined

functor is an isomorphism of categories by constructing an inverse.

1.40 Lemma. We define a functor Σ between the category of complete Ω-structures and the category

of sheaves of structures on Ω in the following way: let A be a complete Ω-structure, we define a

sheaf of structures for τ on Ω, Σ(A) : Ω→ Stτ .

• Let u be in Ω, define

Σ(A)(u) = {a ∈ A | [a ≈ a] = u}.

• Let c be a constant symbol, we define cΣ(A)(u) as the unique element of A tsuch that, for all

a ∈ A,

[a ≈ cΣ(A)(u)] = [a ∼ cA(∗)] ∧ u.

• Let f be a function symbol, we define fΣ(A)(u) for all ā ∈ Σ(A)(u)n. We define fΣ(A)(u)(ā)

to be the unique element in A such that for all b ∈ B,

[b ≈ fΣ(A)(u)(ā)] = [b ∼ fA(ā)].

• Let R be a relation symbol, for all ā ∈ Σ(A)(u) we define

RΣ(A)(u)(ā) iff u = [RA(ā)].
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• Let v ≤ u be elements of Ω, we define the restrictions ρuv for m ∈ Σ(A)(u), letting m|v to be

the unique element of A such that, for all b ∈ A,

[m|v ≈ b] = [m ≈ b] ∧ v.

Let α : A→ B be a morphism of Ω-structures, where B is a complete Ω-structure and u ∈ Ω. We

define Σ(α) : Σ(A) → Σ(B), a mapping such that for a ∈ Σ(A)(u), then Σ(α)u(a) is the unique

element of B such that, for all b ∈ B,

[b ≈ Σ(α)u(a)] = [b ∼ α(a)].

Proof. Let u be in Ω, v ≤ u, A,B be complete Ω-structures and α : A → B be a morphism of

Ω-structures, the fact that the definition of structure in Σ(A)(u) and the definition of the mapping

Σ(α)u is correct follows from the fact that, for allā ∈ An and d ∈ A, the mappings

b 7→ [b ∼ cA(∗)] ∧ u, b 7→ [b ∼ fA(ā)], b 7→ [b ∼ α(a)], b 7→ [b ≈ a] ∧ v

for b ∈ A, where c is a constant symbol and f function symbol all define singletons, hence, by

using completeness we get that cA(u), fA(u),Σ(α)u and ρuv are well defined. The naturalness of the

restrictions is proven in [Bo94, p. 164].

Next we show that the restrictions define morphisms of first order structures with signature τ .

Let c be a constant symbol in τ, we have to see thatcΣ(A)(u)|v = cΣ(A)(v), which follows from

u ∧ v = v. Let f be a function symbol in τ and ā ∈ Σ(u)n, we have to show that fΣ(A)(u)(ā)|v =

fΣ(A)(v)(a1|v, . . . , an|v). This follows since, for all b ∈ A,

[b ≈ fΣ(A)(u)(ā)|v] = [b ≈ fΣ(A)(v)(a1|v, . . . , an|v)],

which can be obtained by using v = [ai ≈ ai|v]. Let R be a relation symbol and ā ∈ Σ(A)(u)n

such that RΣ(A)(u)(ā), that is to say, u = [RA(ā)]. Using again v = [ai ≈ ai|v] and that in-

terpretations of relations are restricted and extensional we have [RA(a1|v, . . . , an|v)] = v, that is

RΣ(A)(v)(a1|v, . . . , an|v).
Next we show that Σ(α)u is a homomorphism of structures. Let f be a function symbol in τ

and ā ∈ Σ(A)(u)n, we have

[b ∼ α ◦ fA(ā)] =
∨
d∈A

[b ∼ α(d)] ∧ [d ∼ fA(ā)]

=
∨
d∈A

[b ∼ α(d)] ∧ [d ≈ fΣ(A)(u)(ā)]

= [b ∼ α(fΣ(A)(u))(ā)]

= [b ≈ Σ(α)u(fΣ(A)(u)(ā))],
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where the third last equality is obtained since the join is reached in d = fΣ(A)(u)(ā). In a similar

way [b ∼ f b ◦ (α, . . . , α)(ā)] = [b ≈ fΣ(B)(u)(Σ(α)u(a1), . . . ,Σ(α)u(a1))]. By recalling that α is

a morphism of Ω-structures and that B is a complete Ω-structure we have

Σ(α)u(fΣ(A)(u)(ā)) = fΣ(B)(u)(Σ(α)u(a1), . . . ,Σ(α)u(a1))

as wanted. For constant symbols the calculation is very similar, and for relation symbols a routine

computation is all that it is required.

It remains to show the functoriality of Σ. Let β : B → C be a morphism of (complete) Ω-

structures, we note that Σ(β ◦ α) = Σ(β) ◦ Σ(α), using the completeness of C.

1.41 Lemma. Let A be a complete Ω-set. The set

An = {(a1, . . . , an) | ai ∈ A and [a1 ≈ a1] = · · · = [an ≈ an]}

with the Ω-equality given by

[ā ≈ b̄] =

n∧
i=1

[ai ≈ bi]

for all ā, b̄ ∈ An and projections pi : An → A given by

[a ∼ pi(ā)] = [a ≈ ai]

for all a ∈ A, ā ∈ An and i ≤ n is the product of n times A in the category of complete Ω-sets.

The following lemma, for τ = ∅, that is to say that, for Ω-sets, appears in [Si01] as it has been

said before. The general case proved below is ours.

1.42 Lemma. We define a functor Γ : StΩ
op

τ → Ω-Stτ in the following way: let F be a presheaf of

structures on Ω. The set Γ(F ) =
∐
u∈Ω F (u) is an Ω-structure with the Ω-equality given by

[a ≈ b] =
∨
{w ∈ Ω | a|w = b|w},

para a, b ∈ Γ(F ); a constant symbol, c, is interpreted by making

[a ∼ cΓ(F )] = [a ≈ cF (1)] =
∨
{v | a|v = cF (v)}

for all a ∈ A; a function symbol f are interpreted as the morphism fΓ(F ) | Γ(F )n → Γ(F ) defined

by

[a ∼ fΓ(F )(a1, . . . , an)] = [a ≈ fF (∧i≤nui)(a1|∧i≤nui , . . . , an|∧i≤nui)]

=
∨{

w ∈ Ω | a|w = fF (w)(a1|w, . . . , an|w)
}
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for all ai ∈ F (ui) and 1 ≤ i ≤ n; the interpretation of relation symbols R is given by the equation

[RΓ(F )(ā)] =
∨{

w ≤
n∧
i=1

[ai ≈ ai] | RF (w)(a1|w, . . . , an|w)

}
,

for all ā ∈ An. These interpretations turn Γ(F ) into an Ω-structure. Let G be another presheaf of

structures for τ and α : F → G morphism of presheaves, we define Γ(α) : Γ(F ) → Γ(G) by the

equation

[b ∼ Γ(α)(a)] = [b ≈ αu(a)] =
∨
{w | b|w = αw(a|w)}

for all b ∈ Γ(G) and a ∈ F (u). Besides, if F is a sheaf of structures, Γ(F ) is a complete Ω-

structure.

Proof. By a previous lemma, this Ω-equality defines an Ω-set that, in the case where F is a sheaf

of sets, is complete. The fact that the above definition turns Γ(F ) into an Ω-structure reduces to

similar calculations to those made before.

Let α : F → G be a natural transformation between presheaves of structures. To see that

Γ(α) : Γ(F ) → Γ(G) is a morphism of Ω-structures follows from the definitions. For example, if

R is a relation symbol in τ, ā ∈ Γ(F )n and b̄ ∈ Γ(G)n, then

[RΓ(F )(ā)] ∧ [b̄ ∼ (α, . . . , α)(ā)] = [RΓ(F )(ā)] ∧
n∧
i=1

[bi ∼ α(ai)]

= [RΓ(F )(ā)] ∧
n∧
i=1

∨
{w | bi|wi = αwi(ai|wi)}

=
∨
{w ∧

n∧
i=1

wi | RF (w)(a1|w, . . . , an|w) y bi|wi = αwi(ai|wi)}

≤
∨
{u | RF (u)(a1|u, . . . , an|u) y bi|u = αu(ai|u)}

=
∨
{u | RG(u)(b1|u, . . . , bn|u)}

= [RΓ(G)(b̄)].

Functoriality reduces to another simple calculation.

1.43 Corollary. Γ restricts to a functor between the category of sheaves of structures of signature

τ on Ω and the category of complete Ω-structures of signature τ.

To say that F is a sheave of structures is equivalent to say that for ā ∈ Γ(F )n, [RΓ(F )(ā)] is a

maximum more than a join, that is to say

[RΓ(F )ā] = max

{
w ≤

n∧
i=1

[ai ≈ ai] | RF (w)(a1|w, . . . , an|w)

}
.
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The following theorem, announced before, is proved as an equivalence in his version for Ω-sets

in [Bo94, p. 162]. It also appears in [Si01, p. 2] and there is a proof of a minor variation, where the

morphisms considered admit a simpler description.

1.44 Theorem. The category of sheaves of structures of signature τ on Ω is isomorphic to the

category of complete Ω-structures of signature τ.

Proof. Since there is no place for confusion, let’s call Γ the functor defined in the above corollary.

We will prove that Γ ◦ Σ is the identity functor of the category of complete Ω-structures and that

Σ ◦ Γ is the identity functor of the category of sheaves of structures over Ω. Let F be a sheaf of

structures on a locale Ω and u ∈ Ω, then

Σ ◦ Γ(F )(u) = {a ∈ Γ(F ) | [a ≈ a] = u} = F (u).

It is easily proved that the restrictions defined by the functor Σ ◦ Γ are identical to those of F and

that the structure of Σ ◦ Γ(F )(u) is in fact the same as the structure of F (u). It is worth noting that

in order to prove the facts corresponding to relation symbols it is necessary to use that F is a sheaf

of structures. Finally, let G be a sheaf of structures and α : F → G, it is clear that Σ ◦ Γ(α) = α.

Now we will see that Γ ◦ Σ is the identity of the category of complete Ω-structures. Let A be

a complete Ω-structure, it is clear that Γ ◦ Σ(A) = A. We have to show that the two Ω-equalities

defined in A are the same. For now, let’s denote by [∗ ≈ ∗]1 the Ω-equality of A and by [∗ ≈ ∗]2
the Ω-equality of Γ ◦ Σ(A). Let a, b be in A, then

[a ≈ b]2 =
∨
{w ≤ [a ≈ a]1 ∧ [b ≈ b]1 | a|w = b|w}.

For all c ∈ A, we have

[a|[a≈b]1 ≈ c]1 = [a ≈ c]1 ∧ [a ≈ b]1 = [b ≈ c]1 ∧ [a ≈ b]1 = [b|[a≈b]1 ≈ c]1.

On the other hand, if w ∈ Ω is such that w ≤ [a ≈ a]1 ∧ [b ≈ b]1 and a|w = b|w we have that

[a ≈ a|w]1 = [a ≈ a]1 ∧ w = w = [a ≈ b|w]1 = [a ≈ b]1 ∧ w

and then w ≤ [a ≈ b]1. Hence [a ≈ b]1 = [a ≈ b]2 and we can forget about subindices.

By similar calculations to those carried out before, the Ω-structures A and Γ ◦ Σ(A) coincide.

We can conclude also that, when B is a complete Ω-structure and β : A→ B, Γ ◦ Σ(β) = β.

The following lemma is enunciated in [Si01, p. 39] and is easily proved.
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1.45 Lemma. Let F ∈ StΩopτ , ρ ∈ σ ◦ Γ(F ) and a ∈ Γ(F ), then

[ρ ≈ σa] = ρ(a).

We have defined all the elements that play a roll in our definition of the sheafification functor

whose description is found without proof, for the case of Ω-sets, in [Si01, p. 48], it is not found in

[FS79]. The proof is ours.

1.46 Theorem. The inclusion i of the category of sheaves of structures of signature τ on Ω into

StΩ
op

τ admits Σ ◦ σ ◦ Γ as a left adjoint.

Proof. Let F be in StΩ
op

τ , we define a morphism of presheaves ηF : F → i ◦ Σ ◦ σ ◦ Γ(F ) (from

now on we will omit the morphism i). Let u be an element of Ω, then

ηFu : F (u) → Σ ◦ σ ◦ Γ(u)

a 7→ σa.

Clearly this mapping is well defined since, for all a ∈ F (u), [σa ≈ σa] = σa(a) = [a ≈ a]. It is

also easy to see that this is in fact a morphism of structures by using that σ ◦ Γ(F ) is complete and

doing some calculations similar to those made before. A routine computation shows that ηF is a

natural transformation.

Now we show that η is the unity in the adjunction. Let H be a sheaf of structures of signature τ

on Ω and β : F → H a morphism of presheaves. Let’s see that there is a unique γ : Σ◦σ ◦Γ(F )→
H such that γ ◦ ηF = β. Let u be a fixed element of Ω. Let ρ be an element of Σ ◦ σ ◦ Γ(F )(u).

We know that [ρ ≈ ρ] =
∨
a∈Γ(F ) ρ(a) = u. We will define γu(ρ), by using that H is a sheaf,

as the gluing of the compatible family (βρ(a)(a|ρ(a)))a∈Γ(F ). This family makes sense since for all

a ∈ Γ(F ), ρ(a) ≤ [a ≈ a]. Let’s see that the family is compatible. Let a, b be in Γ(F ), then

βρ(a)(a|ρ(a))|ρ(a)∧ρ(b) = βρ(a)∧ρ(b)(a|ρ(a)∧ρ(b))

= βρ(a)∧ρ(b)(b|ρ(a)∧ρ(b))

= βρ(b)(b|ρ(b))|ρ(a)∧ρ(b),

where we have used that β is a natural transformation and H is a sheaf. We note that since F is

not necessarily a separated sheaf it could be the case that a|[a≈b] 6= b|[a≈b], however since H is a

sheaf the above equalities hold. We can define γu(ρ) as the unique element in H(u) such that, for

all a ∈ Γ(F )

γu(ρ)|ρ(a) = βρ(a)(a|ρ(a)).
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We have that γ ◦ ηF = β since, for all a ∈ F (u), we have that for all b ∈ Γ(F )

βu(a)|[a≈b] = β[a≈b](a|[a≈b]) = β[a≈b](b|[a≈b]),

and so γu(σa) = βu(a), that is to say, γuηFu (a) = βu(a).

Next we see that γu is a homomorphism of structures. The fact that it preserves interpretations

of constant symbols follows in a similar say to the preservation of function and relation symbols.

Let f be a function symbol of τ and ρ̄ ∈ Σ ◦ σ ◦ Γ(F )(u)n. We have to show

γu(fΣ◦σ◦Γ(F )(u)(ρ̄)) = fH(u)(γu(ρ1), . . . , γu(ρn)).

Let’s denote fΣ◦σ◦Γ(F )(u)(ρ̄) = ρ and let a be an element of Γ(F ), we have that

ρ(a) = [σa ≈ fΣ◦σ◦Γ(F )(u)(ρ̄)]

=
∨

b∈Γ(F ),ā∈Γ(F )n

[b ∼ fΓ(F )(ā)] ∧ [b ≈ a] ∧
n∧
i=1

ρi(ai).

Let now b be in Γ(F ), ā ∈ Γ(F )n and w(b, ā) = [b ∼ fΓ(F )(ā)] ∧ [b ≈ a] ∧
∧n
i=1 ρi(ai). We have

that

fH(u)(γu(ρ1), . . . , γu(ρn))|w(b,ā) = fH(w(b,ā))(γu(ρ1)|w(b,ā), . . . , γu(ρn)|w(b,ā))

= fH(w(b,ā))(βw(b,ā)(a1|w), . . . , βw(b,ā)(an|w))

= βw(b,ā)(f
F (w(b,ā))(a1|w, . . . , an|w))

= βw(b,ā)(b|w(b,ā))

= βw(b,ā)(a|w(b,ā))

= βρ(a)(a|ρ(a))|w(b,ā),

where we have use the definition of w(b, ā).

Since (w(b, ā))b∈Γ(F ),ā∈Γ(F )n constitutes a covering of ρ(a) we have that

fH(u)(γu(ρ1), . . . , γu(ρn))|ρ(a) = βρ(a)(a|ρ(a))

and so

fH(u)(γu(ρ1), . . . , γu(ρn)) = γu(fH(u)(γu(ρ1), . . . , γu(ρn)))

as we wanted to show.
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Let R be a relation symbol of τ and ρ̄ ∈ Σ ◦ σ ◦ Γ(F )(u)n such that RΣ◦σ◦Γ(F )(u)(ρ̄), we have

that

u = [Rσ◦Γ(F )(ρ̄)]

=
∨

ā∈Γ(F )n

[RΓ(F )(ā)] ∧
n∧
i=1

ρi(ai)

=
∨

ā∈Γ(F )n

∨
{w ∧

n∧
i=1

ρi(ai) : RF (w)(b1|w, . . . , bn|w)}

Let ā ∈ Γ(F )n and w such that RF (w)(a1|w, . . . , an|w), then

RF (w∧
∧
i≤n ρi(ai))(a1|w∧∧i≤n ρi(ai), . . . , an|w∧∧i≤n ρi(ai)),

and so, by using that β is a morphism of presheaves of structures we obtain

RH(w∧
∧
i≤n ρi(ai))(βw∧

∧
i≤n ρi(ai)

(a1|w∧∧i≤n ρi(ai)), . . . , βw∧∧i≤n ρi(ai)(an|w∧∧i≤n ρi(ai)));
by using the definition of γ we get

RH(w∧
∧
i≤n ρi(ai))(γu(ρ1)|w∧∧i≤n ρi(ai), . . . , γu(ρn)|w∧∧i≤n ρi(ai)).

And then, since the elements w ∧
∧
i≤n ρi(ai) constitute a covering of u, and H is a sheaf, we can

conclude that

RH(u)(γu(ρ1), . . . , γu(ρn)).

Let’s now see that γ is a natural transformation. Let v ≤ u, and ρ ∈ Σ ◦ σ ◦ Γ(F ) we show

γu(ρ)|v = γv(ρ|v). A covering for v is (ρ(a) ∧ v)a∈A, besides

ρ|v(a|v) = [ρ|v ≈ σa|v ]

= [ρ ≈ σa|v ] ∧ v

= ρ(a|v) ∧ v

= ρ(a|v),

and so

γv(ρ|v)|ρ(a|v) = γv(ρ|v)|ρ|v(a|v)

= βρ|v(a|v)((a|v)|ρ|v(a|v))

= βρ(a|v)(a|ρ(a|v))

= γu(ρ)|ρ(a|v),
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since H is a sheaf, we conclude γu(ρ)|v = γv(ρ|v).

It remains to prove that γ is the only transformation γ : Σ◦σ◦Γ(F )→ H such that γ ◦ηF = β.

Let α : Σ ◦ σ ◦Γ(F )→ H be a morphism of presheaves of structures such that α ◦ ηF = β, that is,

for all v ∈ Ω and b ∈ F (v)

αv(σb) = βv(b).

Let a be an element of Γ(F ) and ρ ∈ Σ ◦ σ ◦ Γ(F )(u). We have that

αu(ρ)|ρ(a) = βρ(a)(a|ρ(a)),

αu(ρ)|ρ(a) = αρ(a)(ρ|ρ(a))

= αρ(a)(ρ|[ρ≈σa])

= αρ(a)((σa)|ρ(a))

= αρ(a)(σa|ρ(a))

= βρ(a)(a|ρ(a)),

and so α = γ. This concludes the proof of the uniqueness of γ.

3.2 Logic of sheaves of structures

In [FS79, p. 358] it is defined a first order semantics for Ω-structures. However, since our main

interest is to generalize Caicedo’s work, we will define a semantic for sheaves of structures, equiv-

alently complete Ω-structures. From now on we consider sheaves of structures A, unless is stated.

We will treat them as a functor letting A(u) denote the structure corresponding to each u ∈ Ω and

as a complete Ω-structure with universe A =
∐
u∈ΩA(u).

2.1 Definition (Interpretation of terms.). Let t(x1, . . . , xn) be a term with n variables in the lan-

guage τ and A an Ω-structure. We define by recursion in the complexity of the term a function

tA : An → A that we call the interpretation of t in A.

• If c is a constant symbol cA = cA(1).

• If x is a variable then xA : A→ A is the identity.

• If tA1 , . . . , t
A
n have been defined and f is a function symbol then, for all ā ∈ An, con ai ∈ ui

f(t1, . . . , tn)A(ā) = fA(
∧
i≤n ui) ◦ (tA1 (ā), . . . , tAn (ā)).
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If t has n variables and appears in a formula with more free variables, we will consider the rest of

the variables as mute for the interpretation.

Instead of defining a logic beginning with points, as in [Ca95], we define the maximum of the

elements in the algebra which satisfy a formula.

2.2 Definition (First order semantics for sheaves of structures.). Let A be a sheaf of structures. We

define a semantics valuated in the complete Heyting Algebra Ω. For every formula φ with n free

variables we define

φA : An → Ω, ā 7→ [φA(ā)]

by recursion in the complexity of the formula in the following way:

• Let t1, t2 be terms with n and m free variables and ā ∈ An, b̄ ∈ Am,

[(t1(ā) = t2(b̄))A] = [(tA1 (ā) ≈ tA2 (b̄))].

• Let R be an n-ary symbol of relation in τ and t1, . . . , tn terms and ā ∈ Am where m is the

number of variables of R(t1, . . . , tn),

[R(t1(ā), . . . , tn(ā))A] = [RA(tA1 (ā), . . . , tAn(ā))].

• If φ, ψ are formulas, we define

[(¬φ)A] = ¬[φA],

[(φ→ ψ)A] = [φA]⇒ [ψA],

[(φ ∧ ψ)A] = [φA] ∧ [ψA],

[(φ ∨ ψ)A] = [φA] ∨ [ψA],

[(∃xφ(x))A] =
∨
a∈A[φA(a)] ∧ [a ≈ a],

[(∀xφ(x))A] =
∧
a∈A[a ≈ a]⇒ [φA(a)].

The interpretations of formulas in complete Ω-structures turn out to be extensional in the same

way that interpretations of relations are. If φ is a formula in the language τ,A is a sheaf of structures

of signature τ and ai, bi ∈ A, then

[φA(ā)] ∧
n∧
i=1

[ai ≈ bi] ≤ [φA(b̄)].

By an easy calculation we can obtain the satisfaction of the axioms of equality for first order theories

in all sheaves of structures.
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2.3 Lemma. Let φ(x1, . . . , xn) be a formula with n free variables and A a complete Ω-structure

with ā, b̄ ∈ An, then

• [∀x(x = x)A] = 1

• [∀x1 . . . ∀xn∀y1 . . . ∀yn((φ(x̄) ∧
∧n
i=1 xi = yi)→ φ(ȳ))A] = 1

Following an inverse order to the one used in [Ca95] we define the forcing in elements of the

locale.

2.4 Definition (Forcing in elements of Ω). Let A be a complete Ω-structure, ai ∈ A and φ(x̄) be a

formula with n fre variables. We define the forcing in elements of Ω by

A u φ(ā) iff u ≤ [φA(a1, . . . , an)].

From now on we generalize the logic defined in [Ca95] following its lines until the proof of the

Generic Model Theorem. We begin by noting that:

[φ(ā)A] = max{u ∈ Ω | A u φ(ā)}.

We have, as in [Ca95, p. 18]:

(A) If A u φ and v ≤ u, then A v φ.

(B) If aj ∈ A(u) and u =
∨
i∈I ui and A ui φ(a1|ui , . . . , an|ui) for all i ∈ I, then A ∨

i∈I ui

φ(ā).

We note that (B) generalizes for all formulas of language τ what holds by definition for atomic

formulas. Our forcing generalizes the one defined in [Ca95, p. 19] as it is shown in the following

lemma.

2.5 Lemma (Kripke-Joyal semantics). Let A be a complete Ω-structure. The forcing relation in the

elements u of the algebra Ω, A u φ(ā), is the only one which satisfies the following conditions.

1. A u t1(ā) = t2(b̄) iff tA1 (a1|u, . . . , an|u) = tA2 (b1|u, . . . , bn|u).

2. A u R(t1(a1), . . . , tn(an)) iff RA(u)(tA1 (a1)|u, . . . , tAn(an)|u).

3. A u φ ∧ ψ iff A u φ y A u ψ.

4. A u φ ∨ ψ iff there are v, w ∈ Ω such that u = v ∨ w with A u φ and A w ψ.
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5. A u ¬φ iff for all w ∈ Ω such that 0 < w ≤ u, A 1w φ.

6. A u φ→ ψ iff for all w ≤ u, A w φ implies A w ψ.

7. A u ∃x(φ(x, ā)) there is {ui}i∈I in Ω and elements bi ∈ A(ui) such that u =
∨
i∈I ui and

for all i ∈ I, A ui φ(bi, ā)).

8. A u ∀x(φ(x, ā)) iff for all w ≤ u and all b ∈ A(w), A w φ(b, ā).

Proof. The uniqueness in the relation of forcing A u φ will be proved if 1.-8. are satisfied since

these constitute a definition by recursion in the complexity of a formula φ of the forcing relation. 1.

and 2. follow directly from extensionality and restriction of the interpretation of R and given that

the interpretation of terms is a morphism of complete Ω-structures. The remaining cases are proved

by induction in the complexity of φ.

3. u ≤ [(φ ∧ ψ)A] = [φA] ∧ [ψA] iff u ≤ [φA] and u ≤ [ψA].

4. u ≤ [(φ∨ψ)A] = [φA]∨ [ψA] iff u = u∧ ([φA]∨ [ψA]), this is equivalent to the existence of

v, w such that u = w ∨ v, with w ≤ [φA] and v ≤ [ψA]. In that case w ≤ u ∧ [φA] and v ≤ [ψA],

and hence u ≤ w ∧ v ≤ u ∧ [φA] ∨ ∧[ψA] ≤ u.
5. u ≤ [(¬φ)A] = ¬[φA] =

∨
{b : b ∧ [φA] = 0} is equivalent to u ∧ [φA] = 0, which is

equivalent to say that for all w such that 0 < w ≤ u, w ∧ [φA] = 0. This happens iff for all

0 < w ≤ u we do not have w ≤ [φA]. The last equivalence holds since, given 0 < w ≤ u, if

w ≤ [φA], then w ∧ [φA] = w > 0.

6. u ≤ [(φ→ ψ)A] iff u∧ [φA] ≤ [ψA], that is to say, for allw ≤ u, ifw ≤ [φA], thenw ≤ [ψA].

7. If u ≤ [(∃x(φ(x, ā)))A] =
∨
b∈A[φA(b, ā)]∧ [b ≈ b], we have that u =

∨
b∈A u∧ [φA(b, ā)]∧

[b ≈ b], if we define ub = [φA(b, ā)] ∧ u ∧ [b ≈ b] we have, for all b ∈ A, b|ub ∈ A(ub),

ub ≤ [φA(b|ub , ā)], and u =
∨
b∈A ub. On the other hand, if u =

∨
i∈I ui and there are bi ∈

A(ui) such that u =
∨
i∈I ui and for all i ∈ I ui ≤ [φA(bi, ā)], then, since [bi ≈ bi] = ui,

u ≤
∨
i∈I [φ

A(bi, ā)] ∧ [bi ≈ bi] ≤ [(∃x(φ(x, ā)))A].

8. Suppose u ≤ [(∀x(φ(x, ā)))A] =
∧
b∈A[b ≈ b] ⇒ [φ(b, ā)A]. Let w be an element of Ω

such that w ≤ u and b ∈ A(w), then u ≤ [b ≈ b] ⇒ [φ(b, ā)A] so that w = w ∧ u ≤ [φ(b, ā)A].

Now assume that for all w ≤ u and all b ∈ A(w), w ≤ [φA(b, ā)]. Let c be in A, we have that

w = [c ≈ c] ∧ u ≤ u, so w ≤ [φ(b|w, a1|w, . . . , an|w)A], that is to say u ∧ [b ≈ b] ≤ [φ(b, ā)A],

which implies u ≤ [b ≈ b]⇒ [φA(b, ā)]. Hence u ≤ [(∀x(φ(x, ā)))A].

2.6 Example. Let R be a commutative ring with unity and A the sheaf of section of its structural

space that, as it has been said, is a sheaf of rings. The fact that it is a sheaf of rings implies that, in
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the Kripke-Joyal semantics A satisfies all the first order axioms for the theory of rings, furthermore,

A satisfies the first order sentence that says that it is a local ring, that is:

A 1 ∀x(∃y(xy = 1) ∨ ∃y((1− x)y = 1)).

In order to see this let u be an element of Sp(R), we have to prove that for every s ∈ A(u)

A u ∃y((s.y = 1) ∨ ∃y((1− s)y = 1))

Since u is an union of basic open sets and by (B), it remains to consider the case where u = Ob for

some b ∈ R. In this case s = sabn for some a ∈ R [Bo94, p. 181]. Now, given a prime ideal J ∈ Ob,
if a ∈ J, then bn − a /∈ J, because if not, then bn = a+ (bn − a) ∈ J, which is impossible since J

is a radical ideal. In this way we have Ob = (Ob ∩Oa) ∪ (Ob ∩Obn−a), besides, it is evident from

the definitions that

A Ob∩Oa s
a
bns

bn

a = 1, A Ob∩Obn−a (1− sabn)sb
n

bn−a = 1,

where the above assertions are evident if we recall that the interpretation of 1 in A(Obn−a) is sb
n−a
bn−a,

and so the last satisfaction reduces to a simple calculation. We obtain what we want by applying the

laws of the above lemma to the logic connectives ∃ and ∨.

In this way, by studying the semantics of the structural space or the ring R, we realize that this

space behaves as a local ring, although R might not be local. On the other hand, we know that the

ring of global sections A(Sp(R)) is isomorphic to the ring R [Bo94, p. 182]. Another way to look

at this phenomenon is in the form of a local statement, such as the theorem of existence of geodesics

for surfaces or Picard theorem, they both guarantee certain existence in the neighborhood of a point,

that is to say, locally. We could then say that locally, any ring is local. The price to pay for winning

this good behavior is that the logic of sheaves of structures does not satisfy all the laws of classical

logic, as we will see later on.

After establishing this equivalence we will prove that Caicedo’s results still hold for sheaves on

locales by adapting his proofs to our case. In what follows, A will denote a complete Ω-structure

unless stated. The following lemma in its version for topological sheaves is found in [Ca95, p. 17].

2.7 Lemma (Double negation.). Let be u ∈ Ω. A u ¬¬φ(ā) is equivalent to ↓ (u ∧ [φ(ā)]) being

dense in ↓ u.
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Proof. Let’s assume that u ≤ ¬¬[φ(ā)A], this is equivalent to u∧¬[φ(ā)] = u∧
∨
{w | w∧[φ(ā)A =

0]} = 0, it is easy to see that

¬(u ∧ [φ(ā)A]) =
∨
{b | b ∧ [φ(ā)A] = 0}

=
∨
{b | b ∧ u = 0},

that is, ¬(u∧ [φ(ā)]) = ¬u, so ¬(u∧ [φ(ā)A])∧ u = ¬u∧ u = 0, and then ↓ (u∧ [φ(ā)]) is dense

in ↓ u.

Let us assume now that u ∧ ¬(u ∧ [φ(ā)]A) = 0, we have u ∧ [φ(ā)] ≤ [φ(ā)A], this implies

¬[φ(ā)A] ≤ ¬(u ∧ [φ(ā)A]), so u ∧ ¬[φ(ā)A] = 0, and we conclude u ≤ ¬¬[φ(ā)A].

2.8 Example. [Ca95, p. 16] Let’s consider the topological space given byX = R∪{a}, con a /∈ R,
where we add to the topology of R the neighborhoods of a given by (U \ {0}) ∪ {a} for each open

U which contains 0. We consider the topological sheaf given by the tale space p : X → R, where,

for all x ∈ R, p(x) = x and p(a) = 0. Let’s consider the global sections s : R → X such that

s(x) = x and r : R→ X such that r(x) = x para x 6= 0 y s(0) = a. In the logic of the associated

sheaf of structures A we have that A 1R s = r, but A R ¬¬s = r since (−∞, 0) ∪ (0,∞) is

dense in R. Besides, since [(s = r)A] = (−∞, 0) ∪ (0,∞) we have [¬(s = r)A] = ∅, in particular

A 1R (s = r) ∨ ¬(s = r).

2.9 Corollary. A u ¬¬φ(ā) iff there is w ≤ u such that ↓ w is dense in ↓ u and A w φ(ā).

The following result is analogous to the one proved in [Ca95, p. 18]. In its proof we use the

axiom of choice.

2.10 Theorem (Maximum principle). If A u ∃xφ(x), then there is w ≤ u, with ↓ w is dense in

↓ u and a ∈ A(w) such that A w φ(a).

Proof. Assume that A u ∃xφ(x), then there is a covering u =
∨
i∈I ui and elements ai ∈ A(ui)

such that ui ≤ [φ(ai)
A] for all i ∈ I. Let’s consider the set

Γ = {a | [a ≈ a] ≤ u ∧ [φ(a)A]} 6= ∅.

We define the partial order ⊆ for all a, b ∈ Γ in the following way

a ⊆ b iff [a ≈ a] ≤ [b ≈ b] and b|[a≈a] = a.
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Suppose that {aj}j∈J , with J ⊆ I, is a chain for the order ⊆ . This implies that it is a compatible

family. Hence there is a unique gluing a ∈
∨
j∈J uj such that a|uj = aj , and so aj ⊆ a. Fur-

thermore, we have A uj φ(a|uj ), and so A ∨
uj φ(a). We conclude that all chain has an upper

bound, by Zorn’s lemma there is an element a which is maximal in Γ, with [a ≈ a] = v ≤ u.
Let’s now see that ↓ v is dense in ↓ u, or what is the same ¬v ∧ u = 0. In other case ¬v ∧∨

i∈I ui > 0, and then there is i ∈ I such that ¬v ∧ui > 0. We would have then v < (v ∨¬v ∧ui),
or else

0 = v ∧ ¬v = ¬v ∧ (v ∨ (¬v ∧ ui)) = ¬v ∧ ui.

Since v ∧ ¬v ∧ ui = 0, the family {a, ai|¬v∧ui} is compatible and so it has a unique gluing a′ such

that a ( a′ and a′ ∈ Γ, which is impossible by maximality of a.

Kripke-Joyal semantics allows us to characterize the connected elements of a locale in the fol-

lowing way. This result is not found in [Ca95] and we don’t know if it has been noted before.

2.11 Theorem. u ∈ Ω is connected iff for each sheaf of structures A on Ω and each formula φ,

A u (φ ∨ ¬φ) iff A u φ or A u ¬φ

Proof. ⇒ .Assume u is connected and A u (φ∨¬φ), then u ≤ [φA]∨¬[φA],with [φA]∧¬[φA] = 0

and so u ≤ [φA], or u ≤ ¬[φA] as we wanted to see.

⇐ . Assume that u = v∨w with v∧w = 0. Consider the sheaf of sets A such that A(x) = {x}
for all x ∈ Ω, it is sometimes denoted by F (x) = {∗}. The restrictions are the only evident. Let Rv
be a 1-ary relation symbol, we endow A with an interpretation of Rv in A(x), for all x ∈ Ω, so that

R
A(x)
v (x) iff x ≤ v. The fact that A is a sheaf of structures means simply that if x =

∨
i∈I xi and

for all i ∈ I, xi ≤ v, then x ≤ v, which is evident. Let’s consider now the element 1 ∈ F (1), we

have [RAv (1)] = v, since for x ∈ Ω, A x Rv(1) iff x ≤ v. In this way [¬RAv (1)] = ¬v.
Since we have that v ∧ w = 0, we have w ≤ ¬v, so that u ≤ v ∨ ¬v. By the stated above

A u Rv(1) ∨ ¬Rv(1), and using our hypothesis we have A u Rv(1) or A u ¬Rv(1). In the

first case u ≤ v, and so u = v, in the second case u ≤ ¬v, and then

u = ¬v ∧ u = (¬v ∧ v) ∨ (¬v ∧ w) = ¬v ∧ w,

so u ≤ w and then u = w. We conclude that u is connected.

2.12 Corollary. Let u be in Ω we have:

1. u is connected iff for all sheaf of structures on Ω, A and φ, ψ formulas of τ, if A u (φ∨ψ)∧
¬(φ ∧ ψ), then A u φ ∧ ¬ψ or A u ψ ∧ ¬φ.
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2. If u is connected A u (φ ∨ ψ)→ (¬(φ ∧ ψ)↔ (¬φ ∨ ¬ψ)).

Proof. The second assertion is a direct consequence of the first which is proved in a similar way to

the above theorem.

Although we do not offer a characterization of compact locales in terms of the semantics de-

scribed, this can be achieved in a semantics similar to that of Fourman and Scott, that is, a semantic

for Ω-structures in general which don’t ask for completeness.In this semantics, the interpretation

of each term t(x1, . . . , xn) is given by an Ω-morphism tA : An → A, where the construction of

this interpretation follows ours but takes into account that interpretations of constant and function

symbols are Ω-morphisms rather than elements and functions respectively. Interpretation of atomic

formulas are given by

[(t1(ā) = t2(b̄))A] =
∨
b∈A

[b ∼ tA1 (ā)] ∧ [b ∼ tA2 (b̄)].

[R(t1(a1), . . . , tn(an))A] =
∨
b̄∈An

[RA(b̄)] ∧
n∧
i=1

[bi ∼ ti(ai)].

The remaining semantics is defined just as for complete Ω-structures. Using the former semantics,

analogous to the one defined in [FS79], it is possible to characterize compact locales in the following

way: a locale Ω is compact iff for all Ω-structure A and formula φ, [(∃xφ(x))A] = 1 is equivalent

to the existence of a1, . . . , an ∈ A such that 1 =
∨n
i=1[φA(ai)] ∧ [ai ≈ ai]. The implication⇒ is

evident and for⇐, if 1 =
∨
i∈I ui and we want to obtain a finite subcovering of 1 then we consider

the Ω-set with universe {ui : i ∈ I}, the Ω-equality given by [ui ≈ uj ] = ui ∧ uj and the formula

∃x(x = x).

Following Caicedo’s steps we prove the next theorem [Ca95, p. 20].

2.13 Theorem. Let ↓ u be an open connected sublocale of Ω, then

(a) For all a, b ∈ A, A u (a = b ∨ ¬a = b) iff for all v ∈ Ω such that 0 < v ≤ u, ρuv is injective.

(b) A u (φ ∨ ¬φ) for all atomic φ iff for all v ∈ Ω such that 0 < v ≤ u, ρuv is an injective

embedding of structures.

(c) A u (φ ∨ ¬φ) for all formula φ iff for all v ∈ Ω such that 0 < v ≤ u ρuv is an elemental

equivalence.
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Proof. In order to see (a), let a, b be elements in A and suppose A u (a = b ∨ ¬a = b), then

there are v, w ≤ u such that v ∨ w = u and w ≤ [a ≈ b], v ≤ ¬[a ≈ b], so that w ∧ u = 0

and by connectedness of u, w = u or v = u. Let 0 < u1 ≤ u such that a|u1 = b|u1 , that is to

say, u1 ≤ [a ≈ b] then v ∧ u1 = 0 y and so w = u. We have A u a = b. We get then that the

restrictions are injective. For the other implication let a, b be in A(u), if there is 0 < v ≤ u such

that a|v = b|v, then a = b, in particular u ≤ [a ≈ b]. If not, then [a ≈ b] = 0, so u ≤ ¬[a ≈ b]. In

any case A u (a = b ∨ ¬a = b).

(b) follows in the same way that (a), replacing a = b by R(a1, . . . , an), since the restriction are

homomorphisms of structures. We also obtain (c) in the same way that (a) since by the definition

of our semantics, if v ≤ u and A u φ, we have vφ, so, we replace a = b by φ(a1, . . . , an) in the

proof of (a).

2.14 Example. [Ca95, p. 20] For the sheaf of germs of holomorphic functions we have that, if two

holomorphic functions agree in an open, non empty subset V of an open connected set U, then they

are identical in all U. By the former theorem this is equivalent to the fact that the excluded middle

holds for atomic formulas in the semantics of this sheaf.

In order to see that our semantics is a semantics for the intuitionistic logic we prove that Kripke

Models, a natural semantics for intuitionistic logic, can be seen as sheaves of structures.

2.15 Definition. A Kripke model for language τ is a fourfold structure K = (Λ,≤, (Ki), (fij)i≤j)

which satisfies:

(a) (Λ,≤) is a poset.

(b) For all i ∈ Λ, Ki is a structure with signature τ.

(c) For all i ≤ j ∈ Λ, fij : Ki → Kj is a homomorphism of structures.

(d) For all i ∈ Λ fii is the identity.

(e) For all i ≤ j ≤ k, fjk ◦ fij = fik.

2.16 Definition (Semantics of Kripke models). We define the relation K i φ(ā), for all i ∈ Λ and

ā ∈ Kn
i by recursion in the complexity of φ.

1. If φ is an atomic formula K i φ(ā) iff Ki |= φ(ā).

2. K i φ ∨ ψ iff K i φ or K i ψ.
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3. K i φ ∧ ψ iff K i φ and K i ψ.

4. K i φ(ā) → ψ(ā) iff for all j ≥ i, if we have K j φ(fij(a1), . . . , fij(an)), then K j

ψ(fij(a1), . . . , fij(an)).

5. K i ¬φ(ā) iff for all j ≥ i, K 2j φ(fij(a1), . . . , fij(an)).

6. K i ∃xφ(x, ā) iff there is a ∈ Ki such that K i φ(a, ā).

7. K i ∀xφ(x, ā) iff for all j ≥ i and all b ∈ Kj K j φ(b, fij(a1), . . . , fij(an)).

In [Ca95, p. 22] it is shown how every Kripke model can be seen as a sheaf of structures on

a certain topological space and so on its locale of open sets. This result holds for our case then.

However, we will use the sheafification technique described in the previous section in order to

describe the sheaf of structures associated to each Kripke model.

Given a Kripke model K we consider the topological space Λ with the topology associated to

the order Λ+ = {S ⊆ Λ | for i ∈ S and j ≤ i, j ∈ S}, with basis [i) = {j ∈ Λ | j ≥ i}. For all

i ∈ I, let K[i) = Ki and let’s consider the Λ+-structure with universe A =
∐
i∈I K[i) and such

that for all a ∈ K[i), b ∈ K[j) and ak ∈ K[ik)

• [a ≈ b] =
∨
{l ∈ Λ | fil(a) = fjl(b)},

• [RA(ā)] =
∨
{l ∈ Λ | RK[l)(fi1l(a1), . . . , finl(an))},

• [a ∼ cA(∗)] =
∨
l∈Λ[a ≈ cK[l)],

• [a ∼ gA(ā)] =
∨
{l ∈ Λ | fil(a) = gK[l)(fi1l(a1), . . . , finl(an))},

where c,R and g are symbols in τ. Consider now the complete Ω-structure given by σ(A), and the

sheaf of structures Σ ◦ σ(A) = K∗. Let’s see that σ induces an isomorphism of structures between

K∗([i)) and K([i)). The fact that it preserves relations and functions follows quite easily using

calculations already employed in the definition of the functors Γ and Σ. We prove bijectivity.

For injectivity, let a, b be elements of K[i) and assume σa = σb, then we have [a ≈ b] = [a ≈
a] = [b ≈ a] = [i). Now, we have

[i) =
⋃
{[j) | j ≥ i and fij(a) = fij(b)},

but, if i ∈ [j), with j in the former union, then i = j and we have that a = fii(a) = fii(b) = b. For

surjectivity, if ρ is a singleton such that [i) =
⋃
a∈A ρ(a), and i ∈ ρ(a), then [i) ⊆ ρ(a) ⊆ [i), and
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since ρ(a) ≤ [a ≈ a], for all a ∈ K[k), then k ≤ i and we can consider the restriction b = fki(a).

Then we have [a ≈ b] = [i) and we infer

ρ(a) ∩ [a ≈ b] = [i) ⊆ ρ(b) ⊆ [b ≈ b] = [i).

We conclude that b ∈ K[i) and ρ(b) = [i). Let’s see that σb = ρ, let c be in A, we have to show

ρ(c) = [b ≈ c]. Since σ(c) ⊆ [i) = ρ(b), we have ρ(c) = ρ(c) ∩ ρ(b) ≤ [b ≈ c]. In a similar way,

using that [b ≈ c] ≤ [b ≈ b] = [i), we have [b ≈ c] = [b ≈ c] ∧ ρ(b) ≤ ρ(c). The fact that the

inverse of σ preserves relations follows easily. We have that σ induces an isomorphism of structures

between Ki and K∗([i)). This proves that K∗ coincides with the sheaf of structures defined in [Ca95,

p. 22]. We can see that for all i ≤ j ∈ Λ

Ki

σ

��

fij // Kj

σ

��
K∗[i)

ρ
[i)
[j)

// K∗[j)

.

Semantics of a Kripke model can be captured in its associated sheaf of structures in the following

way, as in [Ca95, p. 23].

2.17 Lemma. Let K be a Kripke model and K∗ its associated sheaf of structures. The following are

equivalent

1. K i φ(a1, . . . , an) in the semantics for Kripke models.

2. K∗ [i) φ(σa1 , . . . , σan) in the Kripke-Joyal semantics.

Proof. We reason by induction in the complexity of φ. If φ is an atomic formula, since σ induces

an isomorphism of structures between Ki and K∗([i)), the Kripke semantics coincides in the atomic

case with the classic semantics of Ki and Kripke-Joyal semantics agree with the classic semantics

of K∗([i)). The inductive step is trivial for the connective ∧. For connectives ¬,⇒ y ∀ we note that

for all i, j ∈ Λ, i ≤ j is equivalent to [j) ⊆ [i). For ∨ and ∃ we only prove (2) → (1). For the

connective ∨, if there are opens u, v such that u ∪ v = [i) and we have K∗ u φ and K∗ u ψ,
then, if i ∈ u, K i φ, and similarly for i ∈ v. For the connective ∃ if there is an open covering

{uj}j∈J of [i) and elements aj ∈ uj such that K∗ uj φ(aj , σb1 , . . . , σbn), then, for all i ∈ uj ,

K∗ [i) φ(aj , σb1 , . . . , σbn), and by surjectivity of σ and inductive hypothesis, there is a ∈ Ki such

that iφ(a, b1, . . . , bn).
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2.18 Theorem. `H∗ φ iff for all locale Ω and all sheaf of structures on Ω A, A �1 φ.

Proof. If φ has free variables, we consider the universal closure of φ instead of φ itself. Let φ be a

formula such that for all locale Ω and all sheaf of structures on Ω A, A �1 φ. By the previous lemma

φ is satisfied in all Kripke models and since these constitute a semantic for the intuitionistic logic

H∗ [vD02, p. 33], we have H∗ ` φ. For the other implication, that is to say, the correctness of the

logic of sheaves of structure we note that axioms H1-H10 are satisfied in all sheaf of structures on a

locale Ω since Ω is a Heyting algebra, which also implies the satisfaction of the Modus Ponens rule

of deduction. Using simple calculations we realize the satisfaction of the axioms in the propositional

calculus and the correctness of the derivative rules in our semantics.

In what follows we prepare the proof of the generic model theorem [Ca95, p. 28].

2.19 Definition. A filter F in a locale Ω is F ⊆ Ω such that

• 1 ∈ F .

• For all u, v ∈ F , u ∧ v ∈ F .

• If v ∈ F and v ≤ u, then u ∈ F .

We say that the filter F is trivial when 0 ∈ F . A non trivial filter is maximal when it is maximal

for the order ⊆ among non trivial filters. Just as in the case of filters of open sets in topological

spaces we have:

2.20 Lemma. 1. Let F be a maximal filter, then w ∈ F iff for all u ∈ F , w ∧ u > 0.

2. F is a maximal filter iff for all u ∈ Ω, u ∈ F or ¬u ∈ F .

3. Let F be a maximal filter and w ∈ Ω such that there is u ∈ F which satisfies ¬w ∧ u = 0,

then w ∈ F .

Proof. For 2. we note that if F is maximal and u /∈ F , then, by 1. there is w ∈ F such that

u ∧ w = 0, that is to say, w ≤ ¬u, so u ∈ F . Now, if we assume that for all u ∈ Ω, u ∈ F or

¬u ∈ F and F ⊆ G with G a non trivial filter, if v ∈ G and ¬v ∈ F , then v ∧ ¬v = 0 ∈ G, which

is impossible. We conclude v ∈ F .
3. follows directly from 1. and 2.

The following definition is used to state the theorem.
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2.21 Definition (Generic filter for a sheaf of structures). Let A be a sheaf of structures on Ω. A non

trivial filter F ⊆ Ω is generic for A when for all u ∈ F , ai such that [ai ≈ ai] ≥ u and formulas

φ, ψ we have that:

1. There is w ∈ F such that A w φ(ā) or there is w ∈ F such that A w ¬φ(ā).

2. If A u ∃xψ(x, ā), then there is w ∈ F and b ∈ A satisfying w ≤ [b ≈ b] such that

A w ψ(b, ā).

Maximal filters are our natural examples of generic filters so we will be using axiom of choice.

2.22 Theorem. Let F ⊆ Ω be a non trivial filter. F is a maximal filter iff F is generic for all

sheaves of structures on Ω.

Proof. ⇒ . Let F be a maximal filter, u ∈ F , ai with [ai ≈ ai] ≥ u and formulas φ, ψ. By

maximality of F and the previous lemma, [φ(ā)] ∈ F or ¬[φ(ā)] ∈ F . In the first case A [φ(ā)]

φ(ā) and in the other case A ¬[φ(ā)] ¬φ(ā). If u∃xψ(x, ā), by the maximum principle there is

w ≤ v such that ¬w ∧ v = 0 and A w ψ(b, ā). Thus, we can infer w ∈ F and [b ≈ b] ≥ w.
⇐ . Let’s consider the sheaf of sets A such that A(w) = {w} for w ∈ Ω, sometimes denoted

F (w) = {∗}, with the unique restrictions possible. Let u be an element of Ω, we consider the 1-ary

relation symbol Ru and endow A(w), with the same structure as in theorem 2.11 so that RA(w)
u (w)

iff w ≤ u. Now consider 1 ∈ F (1). Since F is generic for this sheaf of structures A, there is w ∈ F
such that A w Ru(w) or A w ¬Ru(w).Note that (1|w = w). In the first case we haveRA(w)

u (w),

that is w ≤ u so u ∈ F . In the second case we have that for all v satisfying 0 < v ≤ w, we do not

have v ≤ u. This implies that w ∧ u = 0, that is w ≤ ¬u, so that ¬u ∈ F . By the previous lemma

we conclude that F is maximal.

We need to define the notion of filtered limit in the category of first order structures of signature

τ.

2.23 Definition (Filtered limit of structures). Let Ω be a locale, F ⊆ Ω a nontrivial filter. Let

A : Ω → Stτ be a presheaf of structures. The classic limit A[F ] = lim−→u∈F A(u) is a structure

with signature τ whose universe is the set of equivalence classes of the relation ∼F defined in the

disjoint union
∐
u∈F A(u) in the following way. For all a ∈ A(u)and all b ∈ A(v),

a ∼ b iff there is w ∈ F such that w ≤ u ∧ v and a|w = b|w.

We give A structure in such a way that if ai ∈ A(ui), [ai] is the corresponding equivalence class

and c, f,R are symbols of constant, function and relation:
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• cA[F ] = cA(1),

• RA[F ]([a1], . . . , [an]) iff there is u ∈ F , with u ≤
∧n
i=1 ui such that RA(u)(a1|u, . . . , an|u).

• fA[F ]([a1], . . . , [an]) = fA(u)(a1|u, . . . , an|u), where u =
∧n
i=1 ui.

When F is a generic filter for a sheaf of structures A, we say that A[F ] is a generic model. We

need to define the Gdel translation [Ca95, p. 21]. This translation was introduced by Gdel for prov-

ing that classic arithmetic is interpretable in intuitionistic arithmetic, showing the equiconsistency

of both.

2.24 Definition (Gdel’s translation). For each formula φ we define its Gdel translation φG by re-

cursion in the complexity of φ in the following way:

• For an atomic φ, φG := ¬¬φ.

• (φ ∨ ψ)G := ¬(¬φG ∧ ¬ψG).

• (φ ∧ ψ)G := φG ∧ ψG.

• (φ→ ψ)G := ¬(φG ∧ ¬ψG).

• ¬(φ)G := ¬φG.

• (∀xφ)G := ∀xφG.

• (∃xφ)G := ¬∀x(¬φG).

The following theorem is considered by Caicedo as the Fundamental Theorem of Model The-

ory since it has as corollaries Łoś Ultraproducts Theorem, the Ommiting Types Theorem and the

Completeness of first order logic [Ca95, p. 28]. Caicedo also shows that forcing is interpretable in

terms of sheaves of structures. With this theorem we end this text.

2.25 Theorem (Generic model theorem). Let F ⊆ Ω be a generic filter for A, then the following

are equivalent:

1. A[F ] |= φ([a1], . . . , [an]).

2. [(φG)A(a1, . . . , an)] ∈ F .

3. There is u ∈ F such that A u φG(a1, . . . , an).
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Proof. By induction in the complexity of φ. For the atomic case we have

[a1] = [a2] iff exists w ∈ F such that a1|w = a2|w

iff exists w ∈ F such that A w (a1 = a2)

iff exists w ∈ F such that A w ¬¬(a1 = a2),

where in the last equivalence we have implication ⇐ since, using that F is generic, we have the

existence of an element u ∈ F such that A u a1 = a2 or A u ¬(a1 = a2). We can discard

the last option since, in such case w ∧ u = 0. For the case where φ is R([a1], . . . , [an]) we reason

analogously. For the logical connective ∧ we have:

A[F ] |= φ ∧ ψ iff A[F ] |= φ and A[F ] |= ψ

iff there are u, v ∈ F such that A u φ
G and A v ψ

G

iff there is w ∈ F such that Aw  φG ∧ ψG.

For the logical connective ∨ we have that

A[F ] |= φ ∨ ψ iff A[F ] |= φ or A[F ] |= ψ

iff there is v ∈ F such that A v φ
G or there is v ∈ F such that A v ψ

G

iff there is v ∈ F such that A v φ
G ∨ ψG

iff there is v ∈ F such that A v ¬¬(φG ∨ ψG)

iff there is v ∈ F such that A v ¬(¬φG ∧ ¬ψG),

where the last equivalence holds since Kirpke-Joyal semantics satisfies intuitionistic logic and the

third since, if w ∈ F satisfies A w φG ∨ ψG, given that there is u ∈ F such that A u φG or

A u ¬φG, in the first case there is nothing to prove and in the second one A w∧u ψG. For the

logical connective ¬ the situation is simpler:

A[F ] |= ¬φ iff it does not hold that A[F ] |= φ

iff for all w ∈ F ,A 2w φG

iff there is w ∈ F such that A w ¬φG,

where the last equivalence holds becauseF is closed under ∧ and there isw ∈ F such that A w φG

or A w φG. For the connective→ we have

A[F ] |= φ→ ψ iff A[F ] |= ¬φ ∨ ψ

iff there is w ∈ F such that A w ¬φG ∨ ψG

iff there is w ∈ F such that A w ¬(φG ∧ ¬ψG),
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where the first equivalence holds by using classical logic, the second one by the proved before and

inductive hypothesis and, for the third, implication⇒ follows from closure of F under ∧ and the

existence of an element w ∈ F such that A w ¬(φG∧¬ψG) or A w (φG∧¬ψG), being this last

option discarded. For⇐ we discard the existence of a w in F such that A w ¬(¬φG ∨ ψG), since

by laws of the intuitionistic calculus we would have A w ¬¬φG ∧ ¬ψG, and using the previously

proved there would exist some u ∈ F such that A u φG ∧ ¬ψG, and that would contradict our

hypothesis or the closure of F under ∧. For the logical connective ∃ we have

A[F ] |= ∃xφ(x) iff there are w ∈ F , a ∈ A(w) such that A[F ] |= φ([a])

iff there are w ∈ F , a ∈ A(w), u ∈ F tal que A u φ
G(a)

iff there are w ∈ F , a ∈ A(w) such that A w φ
G(a)

iff there is w ∈ F such that A w ∃xφG(x)

iff there is w ∈ F such that A w ¬¬∃xφG(x)

iff there is w ∈ F such that A w ¬∀x¬φG(x).

For the logical connective ∀ we have

A[F ] |= ∀xφ(x) iff for all w ∈ F and a ∈ A(w),A[F ] |= φ([a])

iff for all w ∈ F and a ∈ A(w), there is u ∈ F such that A u φ
G(a)

iff there is w ∈ F such that for all v ≤ w and a ∈ A(v)A v φ
G(a)

iff there is w ∈ F such that A w ∀xφG(x),

where all the equivalence are evident with the exception of the third one. For ⇐ let w ∈ F be

such that A w ∀xφG(x), u ∈ F and a ∈ A(u), then A w∧v φG(a). For ⇒ lets assume that

A[F ] |= ¬∃x¬φ(x), by the previously proved and by inductive hypothesis there is w ∈ F such that

A w ¬¬∀x¬¬φG(x). Lets assume there is v ∈ F such that A v ¬∀xφG(x). By closure of F
under ∧ se can also assume v = w, and so A w ¬¬∀x¬¬φG(x)∧¬∀xφG(x) using the implication

already proved we have that A[F ] |= (∀x¬¬φ) ∧ (¬∀xφ(x)) which is contradictory. Hence, there

is v ∈ F such that A v ∀xφG(x), as we wanted. This concludes the proof of the theorem.
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CONCLUSIONS

• The category of sheaves of structures on a locale is a reflective subcategory of the category of

presheaves of structures on the locale. We gave a proof of this based on the concept of Ω-set

and Ω-structure as these are found in Fourman and Scott work [FS79].

• Under some restrictions, the category of Ω-structures studied by Fourman and Scott turns out

to be equivalent to the one of sheaves of structures on Ω. Its full subcategory whose objects

are complete Ω-structures turns out to be isomorphic to the category of sheaves of structure

on Ω, which is a natural generalization of the category studied by Caicedo in [Ca95].

• The results obtained by Caicedo for the logic of sheaves of structures on topological spaces

generalize in a natural way to the scope of sheaves on locales, including the Generic Model

Theorem.

• We can give a characterization of connected locales, and connected topological spaces in

consequence, in terms of the Kripke-Joyal semantics for sheaves of structures.
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